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Abstract

Uncertainties at end-user and aggregator levels can be highly detrimental to the
practical implementation of residential load control schemes for electricity mar-
ket applications. Uncertainty factors such as end-user non-compliance, comfort
violations and load set-point changes associated with the demand response aggre-
gator are unavoidable in practice. This paper proposes a novel two-stage control
algorithm for robust centralised management of aggregate residential loads which
guarantee precise load set-point tracking in the presence of uncertainties occurring
in real-time while ensuring that end-user thermal comfort is not compromised.
The approach is underpinned by optimal selection of appliances based on an em-
ulated supply curve followed by solving a one-step-ahead optimisation problem.
Using air conditioners and water heaters as the controllable loads, the paper il-
lustrates the effectiveness of the proposed approach in load management whilst
mitigating the effects of unknown uncertainties. Further, the developed control
scheme is compared with an existing industry approach. The results yield that
the proposed control scheme is robust to uncertainties, preserves thermal comfort
and is applicable for practical implementation under existing demand response
standards.
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Nomenclature

A set of appliance indexed by i

ΩAC set of air conditioners

ΩEWH set of water heaters

T
outlet
i upper set point for the EWH in house i (°F)

T
room
i upper set point for the AC in house i (°F)

T outlet
i lower set point for the EWH in house i (°F)

T room
i lower set point for AC the in house i (°F)

ζ set of priority clusters indexed by X j

na number of appliances in each house

Nh number of houses

Preq Required demand response

P AC
i,t power input to the air conditioner i at time t

P EWH
i,t power input of the water heater i at time t

Tdur Duration of demand response event

T outlet
i,t outlet temperature of water heater i at time t (°F)

T room
i,t room temperature for the air conditioner i at time t (°F)

ts duration of time slot
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1. Introduction

With the rapid proliferation of highly intermittent renewable energy sources
such as solar, wind in the generation mix, the grid operators are currently faced
with immense challenges in maintaining the stability and safe operation of the grid
while mitigating supply-demand imbalances in real-time [1]. Although conven-
tional approaches such as network capacity upgrades and reinforcements, spin-
ning reserves have succeeded in addressing these challenges, their high capital
costs and high investment periods have paved the path for grid operators to ex-
plore non-conventional measures of reserve provision. To this end, demand man-
agement schemes have gained much popularity within the power research com-
munity due to recent developments in two-way communication and advanced me-
tering infrastructure (AMI) at the consumer end [2].

Direct Load Control (DLC) [3, 4] is one such promising demand management
technique adopted by utilities or third-parties. In this approach, the end-customers
allow the utilities to control the consumption of household appliances and receive
incentives as compensation for their contribution in demand management events.

To date, a substantial amount of published work is available on the DLC capa-
bilities of thermostatically controllable appliances. For example, the authors in [5]
have proposed a collective control approach for residential Heating-Ventilation-
Air-Conditioning (HVAC) based on a combination of greedy algorithm and a bi-
nary search algorithm while preserving customer-chosen temperature limits. A
centralised control scheme is proposed in [6] for an aggregate heterogeneous pop-
ulation of air conditioners where the control action addresses compressor “lock-
out” effect. The authors in [7] have proposed a state bin transition model and
developed a probabilistic control scheme for air conditioners to provide regula-
tion services. A sliding mode control scheme is introduced in [8] for the real-time
control of air conditioning loads through a universal temperature set-point strat-
egy. An HVAC control scheme coordinated with battery storage is presented in [9]
to obtain flexibility for demand management while ensuring thermal comfort for
end-users. The authors in [10] have introduced an efficient and scalable aggregate
control framework where the solution to a multi-objective optimisation problem
determines control set-points for air conditioners and water heaters. In [11], the
authors have attempted to quantify the flexibility of an electric water heater ag-
gregator and proposed a control scheme based on the mean-field approach. De-
spite the success of most of the proposed approaches in delivering desired capac-
ity without compromising customer comfort, still these control schemes require
guaranteed participation of end-users during a demand management event. Con-
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sequently, most of the approaches fail to deliver desired outcomes in the event of
end-user non-compliance.

On the other hand, a plethora of literature is available on demand management
in the presence of uncertainties. However, most of the studies have only focussed
on uncertainties due to thermal model mismatches [12, 13] and uncertainties due
to forecast errors [14, 15]. For instance, the authors in [12] have developed a ro-
bust model predictive control (MPC) scheme to optimise the energy consumption
of a building while accounting for uncertainties in parameters of the building ther-
mal model. In [14], the authors have proposed an offline stochastic optimisation
approach for demand management under uncertain outdoor temperature forecasts
whereas a stochastic MPC approach is proposed in [15] for building climate con-
trol in real-time under uncertain outdoor temperature. Nonetheless, most of these
approaches have not been able to establish the end-user behaviour in accomplish-
ing desired demand management in an event. Despite the attempt to model the
uncertainty in end-user behaviour in [16, 17], the approach is only valid for mod-
elling the uncertainty in non-controllable load consumption and inapplicable for
modelling end-user non-compliance in real-time. A summary of the existing lit-
erature on demand management in the presence of uncertainties is given in Table
1.

Thus far, only a handful of studies have dealt with achieving desired demand
reduction in the presence of customer non-compliance action. Although the au-
thors in [39, 40] have highlighted the importance of addressing non-compliance
in the formulation, no explicit modelling has been attained while developing con-
trol algorithms. Even though a high-level modelling of non-compliance based
on Markov-chains is proposed in [38], the authors have focussed only on non-
compliance at household level but not at individual appliance level. Nevertheless,
the studies conducted in [41, 42] have pointed out that enabling an override op-
tion or external control action induces end-user’s “perceived control” even though
a utility or an aggregator actually controls the consumption of household appli-
ances. Hence, to be competitive with real-world implementation, it is vital to
develop load control schemes which not only ensure customer comfort but also
account for end-user voluntary compliance.

Meantime, enabling end-user voluntary compliance creates complexities when
an aggregator provides services in electricity markets. As per the existing market
policies, the commitment is mandatory for an aggregator if its bids are cleared
[43]. However, in the event of a significant override, there is no guarantee that the
aggregator will be able to deliver desired bids, which ultimately leads to penalties
for non-compliance. The demand response (DR) trial conducted by the Australian
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Table 1. Comparison of existing approaches for demand management in the presence of
uncertainties

Ref. Application Uncertainty

Occupancy a Non-
compliance b

Temp.
violations c

Set-point
changes

Weather
forecasts

[14] DAS × × × – ✓
[15] RTC × × × – ✓
[16] DAS ✓ × × – ✓
[17] DAS ✓ × × – ✓
[18] DAS × × × – ✓
[19] DAS ✓ × × – ✓
[20] DAS × × – – ✓
[21] DAS × ✓ – – –
[22] DAS × ✓ – – ✓
[23] DAS ✓ × × – ✓
[24] DAS ✓ ✓ – – ✓
[25] DAS × × × – ✓
[26] DAS and RTC ✓ × – – ✓
[27] DAS and RTC ✓ × – – ✓
[28] DAS and RTC ✓ ✓ – – ✓
[29] RTC ✓ × – – ✓
[30] RTC ✓ × – – ✓
[31] RTC ✓ × × – ✓
[32] RTC × – – – ✓
[33] RTC ✓ × – – ×
[34] RTC ✓ × – – –
[35] RTC × × × × ✓
[36] RTC × × – – –
[37] RTC ✓ × – – ✓
[38] RTC ✓ ✓ – – –
proposed RTC ✓ ✓ ✓ ✓ –

‘✓’ : considered, ‘×’ : not considered, ‘–’ not-applicable
DAS – day-ahead scheduling; RTC – real-time control

a occupancy is related to non-controllable loads
b non-compliance is related to controllable loads
c temperature violations due to end-user discomfort (related to non-compliance of HVAC)

Energy Market Operator (AEMO) in 2019 [44], gives evidence of such a non-
compliance event at the level of residential customers during an emergency DR
event. To add more, DLC programs conducted across the world [45] have recorded
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significant customer non-compliance events during the operation. Hence, there is
no doubt that a systematic approach is essential if residential aggregators are to
participate in markets and maximise social welfare in the presence of real-time
uncertainties.

Fig. 1 represents a simulated scenario to illustrate the effect of customer over-
ride on the overall performance of a DR event. The simulation is based on the
data obtained from [46] and shows the divergence of actual consumption from its
expected value due to the override of DR commands by customers.
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Fig. 1. A simulated scenario showing the overall effect of end-user non-compliance on the
performance of a DR event

On the other hand, the existing DLC approaches usually rely on broadcast
control where identical control set-point signals are sent to all participating units
regardless of their state of operation or the level of comfort [47]. This leads to
uneven variations of comfort which could end up some appliances being operated
out of their comfort zones. Thereby, most of the end-users tend to override the
control action with the intention of regaining their comfort.

Moreover, the previous studies have predominantly focussed on control schemes
for regular ON-OFF type air conditioners [5, 7]. However, with the growing de-
mand for inverter-type air conditioners [48], the applicability of previous work
based on regular ON-OFF type air conditioners remains a question. To add more,
the current demand response standards, e.g., AS/NZS 4755 standards in Australia
[49], is only applicable for inverter-type air conditioners [50]. Hence, there is al-
ways a need for control schemes compatible with modern smart home appliances
and at the same time consistent with existing demand response standards.

Knowledge gap
The knowledge gap is summarised as follows:
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• The effect of uncertainties is generally ignored while developing residential
load control schemes for electricity market applications. However, demand
management methods that do not explicitly consider uncertainties are un-
likely to perform as expected in practical settings.

• The inverter-type air conditioners operating under demand response stan-
dards have received little attention compared to regular ON-OFF type air
conditioners in the state-of-the-art load control algorithms.

• The existing load control programs have only focussed on broadcast control
where all the participating units receive an identical control signal from a
central entity at a certain time.

Main contributions
Motivated by the gaps in the existing literature and the outcomes of industrial

DR trials, it is understood that a DR scheme resembling near real-time implemen-
tation while accounting for possible scenarios of uncertainty is highly deemed to
achieve precise load control while managing the comfort for the end customers.
Aligned with this, the main contributions of this work are:

• Development of control schemes to account for uncertainties: Control algo-
rithms are developed for a demand response aggregator to achieve precise
load set-point tracking while accounting for uncertainties at end-user and
aggregator levels in real-time operation arising from:

– Customer non-compliance events

– End-user temperature comfort violations during an event

– System operator’s decision to change the load-set point reduction

• Compatibility with existing demand response standards: The developed
control scheme ensures continuous end-user thermal comfort during the
event and applicable with modern residential thermostatically controllable
loads (TCLs) under existing demand response standards.

• Emulation of supply-curve in electricity markets for optimal selection of ap-
pliances: Unlike broadcast control in the majority of the existing demand
response programs, the proposed control scheme utilises a novel two-stage
control approach for optimal appliance selection which involves a priority-
evolved stacking of appliances emulating a supply-curve in electricity mar-
kets and solving a one-step-ahead optimisation problem. To this end, the
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proposed two-stage control scheme is computationally tractable even un-
der explicit consideration of discrete power consumption levels (demand
response standards) for TCLs.

• Tracking performance under existing demand response standards: The pro-
posed control scheme is able to achieve the same level of tracking perfor-
mance of a non-explicit controller even the consumption of TCLs are re-
stricted to explicit discrete levels under existing demand response standards.

The rest of the paper is organised as follows. Section 2 provides a detailed de-
scription of the overall system model and formulates the problem for the DR ag-
gregator. Section 3 describes the proposed methodology, priority-evolved stack-
ing of appliances and supply curve based decision-making in section 3.1, one-
step-ahead optimisation problem in section 3.2 and the overall control scheme
to address uncertainties in section 3.4. Section 4 presents simulation results to
validate the proposed approach and section 5 concludes the paper.

2. System Model & Problem Formulation

It is assumed that the aggregator is responsible for Nh houses in a particular
geographical area and each house is equipped with an inverter type air conditioner
(AC) and an electric storage water heater (EWH). Fig. 2 summarises the overall
control architecture of the proposed approach.

According to Fig. 2, the aggregator receives control signals {Preq, Tdur} from
the system operator according to its participation in either wholesale markets or
contracts. Here, Preq is the contracted power reduction by the aggregator during a
certain DR event and Tdur is the duration of that particular event. Depending on the
application of DR such as peak shaving or regulation of service, Tdur could vary
from several minutes to hours. Nonetheless, the main contribution of this work
is devising a controller for the aggregator to provide desired demand reduction
during an event. After receiving the information regarding the DR event, the
DR controller executes its own algorithm to control appliances sequentially in
multiple steps. The step size of each time slot is represented as ts.

As shown in Fig. 2, the DR controller generates set-points for each cluster
at each time instant during a demand reduction event. Following this, a mod-
elling framework comprising key aspects of smart energy hubs (SEHs) [51–53] is
utilised to achieve combined demand reduction from ACs and EWHs.
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Aggregator (DR controller)
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fully-controlled partially-controlled un-controlled

Fig. 2. A high-level diagram representing the overall control architecture: the novel supply-curve
based decision-making process for the DR controller results in priority cluster-based control

where devices are fully controlled in lower-priority clusters, partially controlled in the marginal
cluster whereas uncontrolled in remaining clusters; the highlighted portion (A) is further

described in Fig. 3

Fig. 3 represents the sub-system based control implementation in a certain
cluster following the SEH framework. According to Fig. 3, the DR controller gen-
erates separate reference power consumption set-points for the air conditioning
and water heating subsystems in a particular cluster. The input P AC

ref = {P
AC
ref,i,t | ∀ i ∈

ΩAC} to the air conditioning subsystem corresponds to the controller assigned ref-
erence power levels for ACs at time t. Similarly, P EWH

ref = {P EWH
ref,i,t | ∀ i ∈ ΩEWH}

corresponds to the reference power levels for EWHs at time t. The outputs of the
cluster are P AC

out : output electrical power consumption of ACs in the subsystem,
P EWH

out : output electrical power consumption of EWHs in the subsystem.
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Fig. 3. A detailed block diagram showing the control implementation in cluster X j for
air-conditioning and water heating subsystems based on smart energy hubs framework; control

actions in lower priority clusters are not shown.

2.1. Air conditioning subsystem
As shown in Fig. 3, the input to the air conditioning subsystem P AC

ref passes
through the AC override block to give the output P AC = {P AC

i,t | ∀ i ∈ ΩAC}which is
the power consumption of ACs at time t. The power consumption of the i th AC at
time t, P AC

i,t , is measured in kW and bounded such that {P AC
i ≤ P AC

i,t ≤ P
AC
i ;∀ i ∈

ΩAC}.
The AC override vector ΨAC = {ψAC

i,t | ∀ i ∈ ΩAC} contains the override state
of ACs at time t. The override state of the i th AC at time t which is ψAC

i,t can
only be 0 or 1. ψAC

i,t = 1 denotes that AC i has overridden the control signal sent
at time t and opted-out from the DR event, whereas ψAC

i,t = 0 corresponds to the
absence of an overriding event and the AC operates at the reference consumption
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level assigned by the controller at time t. This can be expressed as,

ψAC
i,t =

{
0 if PAC

i,t = P AC
ref,i,t

1 if PAC
i,t , P AC

ref,i,t
(1)

The state vector T AC = {T room
i,t | ∀ i ∈ ΩAC} consists of room temperature of

ACs at time t. Moreover, T room
i,t is measured in °F and bounded s.t. {T room

i ≤

T room
i,t ≤ T

room
i ;∀ i ∈ ΩAC}where T room

i and T
room
i are the minimum and maximum

permissible room temperature for the i th AC. The output is P AC
out = {P

AC
out,i,t | ∀ i ∈

ΩAC} which is the output power consumption of ACs at time t.

2.1.1. Indoor temperature modelling for inverter air conditioners
Fig. 4 represents a detailed model of an inverter-type air conditioner [54]

where T outdoor is the outdoor temperature; T set is the set-point temperature; T room

is the indoor temperature; P AC is the electric power; Q AC is the cooling power; Pd

is the unconstrained electric power; P+sat and P−sat are the upper saturation limit and
lower saturation limit respectively. In addition to that, the DRM input represents
the demand response modes under which an air conditioner can operate during a
DR event.

Fig. 4. A detailed model of an inverter-type air conditioner [54]

Unlike a two-stage on-off compressor type air conditioner, an inverter air con-
ditioner can operate under different power consumption levels by adjusting its
compressor frequency to reach the desired set-point. This can be mathematically
expressed as [48]:

Q AC
i,t = κQ · fi,t + µQ (2)

P AC
i,t = κP · fi,t + µP (3)
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where Q AC
i,t is the cooling power in kW, P AC

i,t is the electrical power input in kW
and fi,t is the compressor frequency in Hz of the i th air conditioner at time t.
Considering residential environments where the required cooling capacity varies
from 2 ∼ 7 kW, the compressor frequency varies between 20 ∼ 150 Hz [48].
Furthermore, κQ, µQ, κP, µP represent the constant coefficients for inverter air
conditioners. For inverter air conditioners with cooling capacity in the range 0.5 ∼
5 kW, κQ = 0.06 kW/Hz, µQ = -0.3 kW, κP = 0.03 kW/Hz and µP = -0.4 kW [48].

Aligned with the operation of an inverter-type air conditioner during a DR
event, a simplified thermal model [55] which represents an intermediate stage of
the overall control operation given in Fig. 4 is utilised in this work. Considering
the cooling mode for air conditioner i ∈ ΩAC at time t, this can be expressed as,

T room
i, t+1 = T room

i, t + ts ·
Gi,t

∆ ci
− ts ·

Q AC
i,t

∆ ci
(4)

where Gi,t is the heat gain rate of house at time t measured in Btu/h and ∆ ci is
the energy required to change the temperature of the air inside the room by 1°F
measured in Btu/°F. Furthermore, Gi,t can be obtained by,

Gi,t =

(A wall
i

R wall
i

+
A ceil

i

R ceil
i

+
A win

i

R win
i

+ 11.77 · η ac · V h
i

)
×
(
T outdoor

i,t − T room
i,t
)

+ SHGC · Asw
i · H

s ·
3.412
10.76

+ H p
i (5)

where A wall, A ceil, A win and A sw are the area of the walls, ceilings, windows and
south-windows in ft2 respectively. R wall, R ceil, R win are the thermal resistance of
walls, ceilings and windows in °F · ft2

· h /Btu. ηac is the number of air changes
per hour (1/h), Vh is the volume of the house in ft3. T outdoor is the outdoor air
temperature in °F, SHGC is the solar heat gain coefficient of windows, H s is the
solar radiation of heat power in W/m2 and Hp is the heat gain from people in
Btu/h. In addition to that ∆ ci can be expressed as,

∆ci = C air · V h
i (6)

where C air is the specific heat capacity of air in Btu/ft3
· °F. The typical values of

thermal parameters in (4), (5) and (6) are obtained from [55] and [56]. A summary
of thermal parameters in (4) and (5) is given in Appendix A.
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2.2. Water heating subsystem
Unlike for the air conditioning subsystem, no overriding capabilities are en-

abled for EWHs in practice. With this assumption, as shown in Fig. 3, the central
controller defined set-points for EWHs P EWH

ref directly pass through as inputs to
the water heating subsystem which is given by P EWH = {P EWH

i,t | ∀ i ∈ ΩEWH}. Fur-
thermore, the power consumption of the i th EWH at time t, P EWH

i,t , is measured in

kW and bounded such that {P EWH
i ≤ P EWH

i,t ≤ P
EWH
i ;∀ i ∈ ΩEWH} where P EWH

i

and P
EWH
i are the minimum and maximum permissible power consumption.

The state vector T EWH = {T outlet
i,t | ∀ i ∈ ΩEWH} consists of temperature of

EWHs at time t where T outlet
i,t is measured in °F and bounded such that {T outlet

i ≤

T outlet
i,t ≤ T

outlet
i ;∀ i ∈ ΩEWH} and T outlet

i and T
outlet
i are the minimum and max-

imum permissible outlet water temperature for the i th water heater. The output
vector is P EWH

out = {P EWH
out,i,t | ∀ i ∈ ΩEWH} which is the output power consumption of

EWHs at time t.

2.2.1. Temperature modelling for electric water heaters
This work considers electric storage type water heaters. The standards intro-

duced in [49] admit that EWHs can operate under discrete power consumption
levels during a DR event. Hence, the thermal model in [55] is reshaped for the i th

water heater at time t as,

T outlet
i,t+1 = T outlet

i,t ·

(
V tank

i − f r
i,t · ts
)

V tank
i

+
T inlet

i · f r
i,t · ts

V tank
i

+
1

8.34
·

(
P EWH

i,t × 3412 −
A tank

i ·
(
T outlet

i,t − T amb
i,t
)

R tank
i

)
·

ts

60
·

1
V tank

i

(7)

where V tank is the volume of the tank in gallons, A tank is the area of the tank in ft2,
R tank is the thermal resistance of the tank in °F · ft2

· h /Btu. Furthermore, f r
i,t is

the flow-rate in gal/min at time t, T inlet
i,t is the inlet temperature of the water heater

in °F at time t and T amb
i,t is the ambient room temperature in °F at time t. Similar

to the thermal model for the air conditioner, the parameters described in (7) are
extracted from [55] and [57]. A summary of thermal parameters in (7) is given in
Appendix A.

2.3. Problem formulation
Consider a scenario where the system operator foresees a supply-demand mis-

match and informs the aggregator to provide Preq of DR within Tdur of time. The
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choice of the specific aggregator could be from bidding in wholesale markets or
bi-lateral contracts. The objective of this work is for the aggregator to achieve
Preq in the presence of uncertainties discussed in section 1 while maintaining the
level of comfort for customers. In achieving the overall objective, the optimal se-
lection of appliances, algorithm development in the presence of uncertainties are
discussed in section 3.

3. Proposed Methodology

Let us consider an aggregator responsible for controlling the consumption of
appliances in Nh households to successfully achieve Preq within Tdur of time. In
doing so, it is assumed that the DR controller has knowledge on the near real-time
consumption of customer-owned controllable appliances. Meantime, customers
provide information to the aggregator on the desired limits of operation for ap-
pliances, e.g., lower and upper thermal set-points for ACs [ T room,T

room
], lower

and upper thermal set-points for EWHs [ T outlet,T
outlet

]. Furthermore, it is as-
sumed that the DR controller has information on thermal models of each house-
hold. Although the direct approach where the aggregator collects information
from each house is trivial and inconsistent, a growing body of literature on indi-
rect approaches such as grey-box and black-box parameter estimation [58, 59] and
learning-based approaches [13, 60] provide solid evidence that these aforemen-
tioned indirect methods are applicable in real-world implementation. A summary
of variables used to formulate the overall problem is given in Table 2.

Table 2. A description of variables used to formulate the problem

Variable Description

Preq,t required demand reduction at time t
P AC

i,t power consumption of i th air conditioner at time t
P EWH

i,t power consumption of i th water heater at time t
∆P AC

i,t power reduction of i th air conditioner at time t
∆P EWH

i,t power reduction of i th water heater at time t
T room

i,t room temperature for i th air conditioner at time t
T outlet

i,t outlet temperature for i th water heater at time t

In order to provide more flexibility to end-customers, an emulation of a supply
curve in electricity markets with cascading priority clusters is accompanied in the
dispatch process.
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3.1. Conceptual priority-based ranking mechanism and emulated supply curve
formation

Consider na number of controllable appliances present in each house h ∈
{1, . . . ,Nh}. For each appliance i ∈ A, a customer is required to define a pri-
ority index j s.t. j ∈ {1, . . . , na}. The priority index j is used as a quantitative
measure of the importance of an appliance over the others. For example, if the
customer in house h assigns priority index j = 1 to the EWH and priority index
j = 2 to the AC, it implies that the operation of the AC is more critical than the
EWH during a DLC event.

Once j is assigned for ∀ i ∈ A by the customers in ∀ h ∈ {1, . . . ,Nh}, a set of
priority orders ζ is defined s.t. ζ =

{
X j | j ∈ {1, . . . , na}

}
where X j corresponds to

priority cluster formed by the appliances with priority index j. In practice, most
of the existing DLC approaches do not allow an appliance to be fully controlled
(turned off), instead allow a minimum consumption level which is usually a frac-
tion of the rated power [49]. Thus, the flexible power of an appliance, which is
the maximum demand reduction that can be achieved from an appliance will differ
from its rated capacity. Adhering to this, the flexible power of an appliance i at a
time t can be expressed as, P flex

i,t = (1 − K) × Pi,rated where K is the minimum frac-
tion of power that should be allocated for an appliance. Based on the flexibility of
appliances, the total flexible power of cluster X j at time t can be expressed as,

P flex
X j, t =

∑
i

P flex
i,t ∀i ∈ X j (8)

Likewise, for ∀X j, the aggregated flexible power at time t can be cascaded in an
increasing priority order to form an emulated supply curve shown in Fig. 5.

Inspired by the determination of the clearing price based on the intersection
between the supply curve and the demand curve in electricity markets, a simi-
lar approach is followed to determine the marginal cluster X j ∗ and non-marginal
lower priority clusters X j for j ∈ {1, 2 . . . j ∗ − 1} where dispatch alterations are
performed during a certain time step in a DR event. For example, when Preq is
required by the system operator as shown in Fig. 5 (represented with a red solid
line), the appliances in X1 and X2 only need to be controlled, where X2 will be
the marginal cluster. Likewise, the emulated supply curve is used to determine
the marginal cluster X j ∗ and the lower priority clusters to be controlled to achieve
Preq at a certain time.
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3.2. Optimisation problem
Once the marginal cluster X j ∗ is determined from the supply curve as in sec-

tion 3.1, the next step is to send control set-points: P AC
ref , P EWH

ref to ACs and EWHs
in that particular cluster as in Fig. 3. The DR controller achieves this by solving
a one-step-ahead optimisation problem to determine the optimal selection of ap-
pliances to be controlled in X j ∗ for the next time step. From the point of view of
the aggregator, the objectives are to minimise the cost of buying electricity from
wholesale markets or contracts, and to minimise discomfort for the contracted end
customers. Therefore, a multi-objective optimisation problem is formed with the
cost function to be a combination of total cost for the aggregator and the total
discomfort for end customers. Considering X j ∗ at time t, it can be expressed as,

F = wcost ·
∑

i

Cp, t · (Pi, t − ∆ Pi, t) · ts + wdis ·
∑

i

DI 2
i, t ∀ i ∈ X j ∗ (9)

where Cp,t is the market price of electricity at time t, ∆Pi,t is the power reduction
and CIi,t is the discomfort index of appliance i at time t. In addition to that wcost

and wdis represents the weights assigned to the cost and discomfort, respectively.
The discomfort index (DI) for ACs and EWHs at time t is obtained from [10]

and mathematically expressed as,

DIi,t =
2 T x

i,t − T x
i − T

x
i

T
x
i − T x

i

∀ i ∈ A (10)
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where x = { room, outlet } s.t. x = room for i ∈ ΩAC and x = outlet for i ∈ ΩEWH.
For i ∈ X j ∗ at time t, the overall optimisation problem with constraints can be

expressed as,

minimise
∆P AC

i,t ,∆P EWH
i,t

F(·) (11)∑
i

∆P AC
i,t +

∑
i

∆P EWH
i,t ≤ Preq,t (12)

P AC
i ≤ P AC

i,t ≤ P
AC
i (13)

P EWH
i ≤ P EWH

i,t ≤ P
EWH
i (14)

P AC
i,t = K AC

i,t · P
AC
i,rated (15)

P EWH
i,t = K EWH

i,t · P EWH
i,rated (16)

K AC
i,t ,K

EWH
i,t ∈ S B {0.25, 0.50, 0.75, 1.0} (17)

wcost + wdis = 1 (18)
s.t. (2) − (7), (9), (10)

The constraint (12) corresponds to the minimum demand reduction required from
the marginal priority cluster at time t. The constraints (13) and (14) describes the
power limits for ACs and EWHs in the marginal priority cluster. The constraints
(15), (16) and (17) describe the discrete power levels each AC and EWH can take.
It is important to mention here that the minimum allowable consumption of an
AC or EWH according to (17) is 0.25 times the rated power which is P AC/EWH

i,rated
for i ∈ X j ∗ . Moreover, the values of K AC

i,t and K EWH
i,t in (17) are consistent with

existing standards [49]. In addition to that, each objective term of the optimisation
problem is normalised and the weights are assigned as in (18).

Remark 1. It is important to highlight that, despite solving a large-scale opti-
misation problem, i.e., a problem with Nh · na decision variables which will de-
termine control set-points for ACs and EWHs at a particular time instant, the
marginal cluster-based approach significantly simplifies the overall control prob-
lem. To elaborate this, control decisions have to be made only for Nh appliances in
the marginal cluster X j ∗ based on one-step-ahead optimisation whereas for appli-
ances in non-marginal clusters {X1, . . . ,X j ∗−1}, the control decision is trivial and
does not require solving an optimisation problem.

The optimisation problem described by (11)-(18) represents a multi-objective
mixed integer quadratic programming problem (MIQP) that consists Nh real de-
cision variables {∆P AC

i,t ,∆P EWH
i,t } ∀ i, ∈ X j ∗ , Nh inequality constraints (12); Nh
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bounding constraints representing (13) and (14); 2Nh+1 equality constraints from
thermal dynamics represented by (4), (7) and multi-objective weights constraints
given by (18), and Nh integral constraints due to (15), (16) and (17).

Let N be the set of appliances participating in the event. At time t, the mis-
match between the desired reduction and the actual reduction can be expressed
as,

e(t) = Preq,t −

N∑
i=1

∆Pi,t ∀ i ∈ X j ∗ (19)

Remark 2. It may be noted that e(t) diminishes with increasing values of N. In
fact, it can be proven that for a given t ∈ [ 0 ,Tdur ], as N −→ ∞,

∑
i ∆Pi,t −→ Preq,t.

This can be proven as follows:

e(t) = Preq,t −

N∑
i=1

∆Pi,t

however , ∆Pi,t = Pi,t−1 − Pi,t

Considering discrete levels from (15) and (16),

Pi,t−1 = αi,t−1 · Pi,rated

Pi,t = αi,t · Pi,rated

∴ e(t) = Preq,t −

N∑
i=1

(αi,t−1 − αi,t) · Pi,rated

Since ∆Pi,t ≥ 0, (αi,t−1 − αi,t) ≥ 0∀ i, t and Pi,rated ≥ 0∀ i. Therefore, N −→ ∞
results in ∥

∑N
i=1(αi,t−1 − αi,t) · Pi,rated∥ −→ |

∑N
i=1(αi,t−1 − αi,t) · Pi,rated|max = Preq,t

obtained from (12). This proves that for a given t ∈ [ 0 ,Tdur ], as N −→ ∞,
∥e(t)∥ −→ 0 and

∑
i ∆Pi,t −→ Preq,t.

It is also worth mentioning that, although this work focuses only on controlling
comfort-based elastic devices [61, 62] such as air conditioners and water heaters,
the approach could be extended to control energy-based elastic devices by util-
ising proper mathematical models as in [61] and designing an index to quantify
discomfort when controlled (similar to (10)). Thereafter, an optimisation problem
similar to (11)-(18) could be formulated with additional constraints for energy-
based control devices to determine control set-points for the pool of comfort-based
and energy-based controllable devices in the marginal cluster.
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3.3. Implementation
After determining the ACs and EWHs to be controlled in the marginal clus-

ter and lower priority clusters based on the emulated supply curve in section 3.1
and one-step-ahead optimisation in section 3.2, the DR controller sends control
commands to obtain desired demand reduction at a certain time step. Since the
DR controller only has access to real-time power consumption measurements but
not temperature measurements, the output power consumption measurements are
used to estimate indoor temperature for ACs and outlet temperature for EWHs
with the help of thermal models (4) and (7) as shown in Fig. 3. After that, with
updated power consumption measurements, the DR controller estimates the ac-
tual demand reduction (Pact,t) and compares it with the reference power reduction
(Preq,t). Thereafter, additional control commands are deployed at next step to ac-
count for mismatches in demand reduction resulting from uncertainties.

3.4. Operation under system uncertainties
If perfect control operation is assumed, determining control set-points in terms

of ∆P AC
i,t and ∆P EWH

i,t for i ∈ {X1, . . . ,X j∗} ,∀t would be sufficient for the DR
controller. However, in reality, due to uncertainties that can occur at any time,
for example, deviations of actual consumption from the reference set-point, i.e.,
P AC/EWH

out , P AC/EWH
ref ; changes in Preq; the DR controller will not be able to de-

liver desired demand reductions as expected. Hence, an algorithm is developed
to achieve precise load reduction under the following uncertainties arising in real-
time operation:

• Customer non-compliance events at a particular time during the DR event.

• Violation of temperature limits during a DR event.

• A change in the set point reduction at a particular time instant during the
DR event.

In addition to that, an approach identical to ‘meter-before-meter-after’ method
[63] is utilised to determine the actual demand reduction Pact,t, for t > 0. Consid-
ering time t, this can be expressed as:

Pact,t =
∑

i

(
PAC

i, 0 − PAC
i,t
)
+
∑

i

(
PEWH

i, 0 − PEWH
i,t
)

(20)

where PAC
i, 0 and PEWH

i, 0 are the initial power consumption of i th air conditioner and
i th water heater. The overall operation under uncertainties is described in Algo-
rithm 1.
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3.4.1. A customer override event
A customer override event, i.e., an end-user non-compliance event, refers to

a scenario where a customer interrupts the aggregator sent DR signal to alter the
operational state of an appliance. In terms of the nomenclature introduced in this
work, the indication of a customer override event for the i th AC at time t is given
by ψAC

i,t = 1. Following an override event at time t, the actual demand reduction
deviates from the desired reduction, i.e. Pact,t < Preq,t. Hence, additional units are
dispatched at time t + 1 to compensate for the mismatch. The expected demand
reduction at time t + 1 following an override event at time t can be expressed as,
Preq,t+1 = Preq,t − Pact,t.

Let the set of appliances overridden at time t is denoted by Ot ={ i ∈ A | ψi,t =

1}. With the DR policy considered in this paper, the appliances in Ot are opted-
out and not controlled for the rest of the DR event. In addition to that, the supply
curve is only formed with the flexible consumption of units which have not en-
countered voluntary compliance. The lines 24 and 32 in Algorithm 1 corresponds
to checking whether an override event has occurred at a certain time instant.

3.4.2. Uncertainty arising due to temperature limit violations
The appliance selection for the DR in this work depends on the combination

of supply curve formulation and solving a one-step-ahead optimisation problem.
However, there is no guarantee that temperature for ACs and EWHs will remain
within the preferred limits at each time step during the DR event. Hence, the lines
7 to 21 in Algorithm 1 takes into account the uncertainties due to temperature
violations. Once appliances are controlled to achieve the desired reduction at
a certain time step, the corresponding room temperature for ACs and the outlet
temperature for EWHs are calculated for the next time step with (4) and (7) and
compared with their corresponding bounds (T

room
for ACs and T outlet for EWHs).

If the temperature for the next step violates the comfort limits, the control over the
appliance is released.

3.4.3. Set point change event
This corresponds to a change in the demand reduction signal sent by the sys-

tem operator. Usually, a set-point change could be either an increase or decrease
in Preq. However, this work only considers an increase in set point where addi-
tional demand reduction needs to be achieved at a certain time step. Similar to a
customer override event, set point change could occur at any time in a DR event.
Hence, at each time step Algorithm 1 checks for a change in set-point (lines 25,
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Algorithm 1: The operation of the DR controller under uncertainties
1 Initialise t = 0;
2 Input: Preq, Tdur, P AC

i,0 , P EWH
i,0 , T

room
i , T outlet

i ,
priority index j, modelling parameters for all i ;

3 Determine ts based on Tdur and the type of event;
4 Supply curve formation to determine X j ∗ ;
5 Optimisation process to dispatch appliances in X j ∗ ;
6 for t = 1; t ≤ Tdur do
7 Calculate T room

i,t with (4) ;
8 Calculate T outlet

i,t with (7) ;
9 for i ∈ ΩAC do

10 if T room
i,t > T

room
i then

11 Update P AC
i,t = P AC

i,rated ;
12 else
13 Keep P AC

i,t ;
14 end
15 end
16 for i ∈ ΩEWH do
17 if T outlet

i,t < T outlet
i then

18 Update P EWH
i,t = P EWH

i,rated ;
19 else
20 Keep P EWH

i,t ;
21 end
22 end
23 Calculate Pact,t as in (20) ;
24 if Preq,t < Preq,t then
25 if Preq,t+1 > Preq,t then
26 Update Preq,t+1 = (Preq,t+1 − Preq,t) + (Preq,t − Pact,t) ;
27 if Preq,t+1 = Preq,t then
28 Update Preq,t+1 = Preq,t − Pact,t ;
29 end
30 Determine Ot with (1) ;
31 Avoid sending control signals ∀ i ∈ Ot for t ∈ [ t + 1,Tdur ];
32 if Pact,t ≥ Preq,t then
33 if Preq,t+1 > Preq,t then
34 Update Preq,t+1 = Preq,t+1 − Preq,t ;
35 if Preq,t+1 = Preq,t then
36 Update Preq,t+1 = 0 ;
37 end
38 end
39 Supply curve formation to determine X j ∗ based on Preq,t+1 ;
40 Optimisation process to dispatch appliances in X j ∗ ;
41 end
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27, 33 and 35) and determines the additional demand reduction required in the
subsequent step.

Considering the overall process, Algorithm 1 first determines temperature vi-
olations at each step and implements necessary control actions. Thereafter, it
checks for customer override events and set-point changes simultaneously at each
time step and determines the additional demand reduction based on their occur-
rences. Once the additional demand reduction is determined, supply curve formu-
lation and one-step-ahead optimisation is performed to deploy control commands
on a chosen set of appliances. This process is repeated until the end of the DR
event.

A low-level control diagram providing information on the overall closed-loop
implementation is given in Fig. 6.

4. Results and Discussions

The proposed DR approach is implemented on two sets of population schemes
such that Nh = 100 and Nh = 1000 in which customers have contracts with an
aggregator to control the consumption of ACs and EWHs.

Consistent with the proposed approach, it is assumed that the underlying in-
frastructure is present for the end-users to communicate with the DR controller.
The sampling period ts is considered to be 1-min to align with present and fu-
ture dispatch intervals of the National Electricity Market (NEM) [65] under the
participation of residential DR. The effect of delays and imperfections in the com-
munication link is assumed to be minimal due to the sufficiently long sampling
period. Furthermore, the operation of residential ACs and EWHs are assumed to
be in compliance with demand response standards described in [49].

The priority j for AC and EWH at each house is randomly generated. Hence,
the supply curve in Fig. 5 is formed with clusters X1 and X2. However, this
approach can be further extended to include more clusters in the supply curve, if
customers allow their electric vehicles (EVs), pool pumps to be controlled.

For the AC subsystem, the real-time power consumption data is obtained from
[46]. The outdoor temperature profile is obtained from [66] and given in Fig. 7.
Further, T room and T

room
for ACs are assumed to vary uniformly asU(68, 71.6)°F

≈ U(20, 22)°C, and U(78.8, 80.6)°F ≈ U(26, 27)°C, where U(.) is a uniform
distribution. At the beginning of the DR event, it is assumed that all ACs are
operating at their set point U(71.6, 75.2)°F ≈ U(22, 24)°C. Then (4) is used
to determine the rated consumption of ACs and to generate reconstructed power

22



Is Measure Calculate 

using (4) and (7)

Cluster Cluster Cluster 

Supply-curve formulation

Send control commands to ACs, EWHs
in 

One-step ahead optimisation
(11)-(18)

Measure Calculate 
using (4) and (7)

Calculate 
using (20)

Is

Update 

Yes

Assessment of
uncertainty

No

Yes

No

Input data Implemented in

Fig. 6. A low-level control diagram illustrating the overall closed-loop implementation; control
algorithms are implemented in MATLAB R2019a and Gurobi 9.0.2 [64] is used to solve the

one-step ahead optimisation problem; solid lines represent control flow and dashed lines
represent information flow

consumption profiles based on the data set. This procedure is followed to make
sure that all ACs are operating at their rated consumption before the DR event.

For the EWH subsystem, it is assumed that T inlet and T amb are constant. T outlet
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Fig. 7. Outdoor temperature on 22-03-2020 obtained from [66]

is assumed U(120, 125)°F and T
outlet

is assumed U(160, 165)°F. Moreover, the
EWHS are operating at their set point U(140, 150)°F before the DR event. Fur-
thermore, it is assumed that the f r is uniformly distributed and remains constant
during the DR interval. Similar to ACs, the rated consumption for EWHs are cal-
culated from (7) to generate reconstructed profiles based on actual consumption
data obtained from [46]. Following this, it is guaranteed that all EWHs are operat-
ing at their set point under rated consumption before the DR event. Under normal
conditions, a EWH usually operates at rated consumption for around 1 hour to
restore a fully empty tank with heated water. For longer DR events, the above
assumption is not reasonable.

It is important to highlight that the dataset for the trials conducted by [46] is not
publicly available. However, for the sake of completion, Fig. 8 illustrates sample
power consumption profiles for ACs and EWHs obtained from [46]. It is evident
from Fig. 8 that inverter-type air conditioners operate under continuous power
levels unlike regular ON-OFF type air conditioners where the power consumption
periodically varies between zero and rated power. Moving on to EWH profiles, it
can be clearly observed the normal operation under rated power is only limited to
shorter durations (less than 1 hour).

Aligned with the typical behaviour of inverter-type ACs and EWHs, a demand
reduction event is considered for Tdur = 1 hour, starting from 15:00 and ending at
16:00 on 22-03-2020. The market price of electricity Cp,t is assumed constant and
obtained from [65].
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Fig. 8. Sample power consumption profiles for inverter-type air conditioners and electric
storage-type water heaters obtained from [46] (1-min resolution)

As illustrated in Fig. 6, all the control algorithms: marginal cluster deter-
mination; operation under uncertainties (Algorithm 1); are written in MATLAB
2019a. The one-step ahead optimisation problem (MIQP problem) described by
(11)-(18) is also modelled in MATLAB 2019a together with YALMIP toolbox [67]
and solved using Gurobi 9.0.2 [64]. The simulations are performed on a computer
equipped with an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz and 32 GB
RAM memory.

In addition to determining the effect of population size Nh on the actual de-
mand reduction, the proposed approach under pre-defined levels of consumption
is compared with a non-explicit approach where ACs and EWHs are capable of
operating at any non-standard (non-discrete) consumption level between 25% and
100% of the rated power.

Fig. 9 illustrates such a simulated scenario (similar to [68]) where ACs and
EWHs in a certain cluster together provide 100 kW of demand reduction assuming
no uncertainties exist during the control period. As can be seen from temperature
plots, at the end of the control period, indoor temperature reaches 80°F ≈ 26.6°C
for certain air conditioners; the outlet temperature reaches as low as 100°F ≈
37.7°C for certain water heaters; which is undesirable. Nonetheless, some devices
operate at nominal temperature throughout the event. This would ultimately lead
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to customer non-compliance events due to the compromise of thermal comfort of
affected end-users. Hence, it is clear that such an uneven control approach is not
desirable in a practical setting where uncertainties can no longer be ignored.
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Fig. 9. The variation of T room for ACs and T outlet for EWHs in a certain cluster when obtaining
100 kW with Nh = 100 under no uncertainties in the overall system

4.1. Performance under the influence of uncertainties
Simulations are performed mainly for two scenarios: 1) a set of customers

override the control signals sent by the aggregator during the DR event; 2) the
aggregator decides to increase the target reduction during a DR event. While
achieving the desired demand reduction under above uncertainties, temperature
violations are also taken into account.

4.1.1. Customer non-compliance event
In the actual implementation, the non-compliance action is only realisable

with air conditioners [49]. Once the customer overrides the DR event, the control
action is released and the AC continues to operate at the rated consumption for the
rest of the DR event. While the aggregator is delivering 100 kW, it is simulated
that 20% of the ACs in cluster X1 override the control action at 15:10.

Fig. 10 shows the performance of the control scheme in acquiring 100 kW
with Nh=100 and Nh=1000. The dip in the actual reduction profile at 15:10 for
both the discrete and non-discrete scenarios correspond to 20% overriding action
in X1. After the overriding event, additional units are dispatched for compensa-
tion and to follow the desired reduction at 15:11. Thereafter, for the rest of the
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Fig. 10. Comparison of demand reduction under customer override for Nh = 100 and Nh = 1000
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represents an override event for a certain AC; (B) represents an event where an AC resumes the

operation at rated power due to temperature violations
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DR event, the control scheme follows the targeted reduction while mitigating de-
mand reduction mismatches due to the release of control on appliances once they
reach their temperature limits. For Nh=100, it is observed that the proposed dis-
crete level implementation achieves the performance of the non-standard scheme
with small deviations in the actual reduction profile. However, for Nh=1000, it
is identified that the proposed scheme is identical to the non-discrete scheme and
achieves perfect tracking.

Fig. 11 illustrates the corresponding variation of power consumption and tem-
perature of ACs in X1 for a population of Nh=100 under the override control
action. After operating at de-rated condition until 15:10, some air conditioners
override the control action and resume the operation at rated power. This is clearly
seen in the power consumption profile of ACs at 15:10. Based on the DR policy
followed in this work, they remain operating at rated power until the DR event
ends at 16:00. On the other hand, for ACs that do not undergo non-compliance,
temperatures reach their upper thermal limits midway during the control period.
Consequently, the DR controller avoids temperature violations according to Al-
gorithm 1 by eliminating the control action on affected units and allowing them to
operate at rated consumption. This is clearly seen in the power consumption pro-
file around 15:30 where some ACs suddenly start to operate at rated power. Since
this would lead to a mismatch in the desired demand reduction, the DR controller
decides to deploy additional control actions on ACs based on (11)-(18) for the
next sampling instant. This back-and-forth temperature violations and demand
mismatch correction process results in pulses in the power consumption profile
and fluctuations in the temperature profile towards the end of the DR event. How-
ever, at the end, the overall control scheme is capable of providing desired demand
reduction while controlling temperature within preferred limits (probably < 80°F)
as observed in the overall indoor temperature profile.

4.1.2. Change in the set point
As shown in Fig. 12, simulations are performed for a scenario where the sys-

tem operator decides to increase the set-point from 75 kW to 125 kW at time
15:10. From 15:00 until 15:10, the aggregator perfectly follows the set-point by
delivering 75 kW of demand reduction. Following the system operator’s com-
mand at 15:10, the aggregator executes Algorithm 1 to send alternate dispatch
signals to compensate for the unmatched 50 kW demand reduction. Thereafter,
the aggregator delivers 125 kW of demand reduction until the end of the event.
The inconsistent tracking around 15:52 for Nh = 100 is due to the limited flexi-
bility to obtain 125 kW with Nh = 100 when the control action is released after
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Fig. 12. Comparison of demand reduction under a set point change event for Nh = 100 and
Nh = 1000

appliances reach their temperature limits. However, this inconsistent behaviour is
eliminated and perfect tracking is achieved when Nh = 1000 is considered. Thus,
the proposed control scheme is capable of providing effective and timely response
to a change in load set-point signal commanded by the system operator without
compromising temperature comfort of participating end-users.

4.1.3. Comparison of total execution time
The total execution time, i.e. the time taken to implement control actions for

Tdur, is compared for the uncertainty scenarios: customer override and set-point
changes, under different population sizes Nh, with and without discrete consump-
tion levels for ACs and EWHs. The results are summarised in Table 3.

As can be seen from Table 3, the operation under discrete consumption levels
is more computationally expensive compared to the operation under non-discrete
consumption levels for the same Nh under the same uncertainty scenario. This
is expected as the approach under discrete consumption levels involves solving
a one-step ahead optimisation problem which is MIQP in nature. However, no
significant variation in total execution time is observed when the operation under a
customer override event and a set-point change event are compared. Nonetheless,
the total execution time remains within the allowable Tdur = 1 hr = 3600 sec limit
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Table 3. Comparison of total execution time for uncertainty events under different population
sizes Nh

Number of houses
(Nh)

Total execution time (sec)

customer override set-point change

without-discrete with-discrete without-discrete with-discrete

100 55.22 142.8 14.52 213.5
1000 188.6 2857 176.0 2823

– simulations are performed on a computer equipped with an Intel(R) Xeon(R) CPU E5-
2680 v3 @ 2.5GHz 32 GB RAM memory.

for all the scenarios considered. Hence, it can be argued that the proposed control
scheme is computationally tractable and is applicable for practical implementation
under large scale aggregation of consumer-owned TCLs.

4.2. Comparison with a current industrial practice
One of the existing approaches is PeakSmart [69], a commercial DR scheme

in Queensland, Australia. As per their practice, the retailer or the DR aggregator
broadcasts an identical control signal, e.g., 25% of rated consumption, irrespective
of operating conditions, to all participating customers during a demand response
event. On the other hand, the approach proposed in this work follows a systematic
method: supply-curve based cluster selection and one-step-ahead optimisation,
to send different control set-points, e.g., 25%, 50%, 75%, 100% of rated power,
only to a limited set of appliances. Despite the effort made to control inverter-
type air conditioners, the existing method [69] also lacks control capabilities to
handle uncertainties, for instance, customer override capabilities, which makes it
unsuitable for the provision of grid services where perfect tracking of the load
set-point signal is essential to avoid financial penalties.

Fig. 13 gives information on a comparison between the existing approach [69]
and our method when achieving 25% demand reduction only from inverter-type
ACs. Based on the assumption that the control is only limited to ACs and EWHs,
the supply-curve is formulated with two clusters: X1, X2 and the control action
occurs only in X1 (marginal cluster). Further investigation of the temperature
profile yields that indoor temperature for ACs in X1 reach upper thermal limits
towards the end of the DR event whereas temperatures remain almost unchanged
for ACs in X2. By this manner, the proposed approach provides 25% of demand
reduction.
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Since identical control set-points are sent to all the participating devices in
the existing approach, it is observed that indoor temperature deviates from set-
point for most of the air conditioners. However, the level of thermal discomfort
experienced by end-users is identified to be lower than in our approach where ACs
only in X1 are controlled. This can be understood by the distributed nature of the
control action in the existing approach which does not require a portion of the
units to be controlled with a higher effort, rather requires the entire population to
be controlled with same effort. Nonetheless, it is worth noting that there is always
a trade-off between the cost of control (depends on the number of ACs controlled)
and the level of thermal comfort experienced.
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Fig. 13. The variation of room temperature under the proposed approach and the existing
approach [69] while achieving 25% demand reduction from Nh = 100

5. Conclusion

This paper presents a control approach using residential controllable loads to
provide desired demand reduction whilst taking into account the uncertain fac-
tors that are inevitable in practice. The uncertain factors that are considered in-
clude end-user non-compliance action, end-user thermal comfort violations, and
changes in the load set-point. A two-stage approach embedded with uncertainty
handling capabilities is proposed. The first stage is to determine priority clus-
ters to be controlled via an emulated supply curve formed by grouping appliances
based on end-user assigned priority levels. This is followed by solving a one-step-
ahead optimisation problem to determine the optimal control of devices within
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the chosen priority clusters. Simulations are validated using a real data set for
inverter-type air conditioners and electric water heaters on two population sizes
under explicit discrete level control aligned with existing demand response stan-
dards and non-explicit consideration of standard levels.

Some of the key insights gained from the study are as follows:

• The same level of performance of a non-explicit control scheme can be
achieved even with the consideration of discrete power consumption levels
in the presence of uncertainties.

• The tracking performance of the proposed control scheme increases as the
population size of the controllable loads increases.

• Through effective uncertainty mitigation, the proposed control scheme has
the potential to outperform existing commercial implementations in terms
of accurate tracking capabilities and reduced control effort requirement.

The findings of this study will be of importance to retailers or demand re-
sponse aggregators to devise control schemes to mitigate financial penalties and
to maximise social welfare in future electricity markets where active end-user par-
ticipation is prevalent.

The future work will be to enhance the performance of the developed control
scheme against latency and other imperfections in the bi-directional communica-
tion infrastructure.
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Appendix A. Thermal parameters for AC and EWH models

Table A.4. Parameters of residential air conditioning systems [55]

Parameter Description Unit

h height of the ceiling ft
A floor area of the floor ft2

A wall area of the walls ft2

A ceil area of the ceiling ft2

A win area of the windows ft2

A sw area of the south-windows ft2

V h volume of the house ft3

R wall thermal resistance of walls °F · ft2 · h /Btu
R ceil thermal resistance of the ceiling °F · ft2 · h /Btu
R win thermal resistance of windows °F · ft2 · h /Btu
ηac number of air changes (1/h)
SHGC solar heat gain coefficient of windows —
Hs solar radiation of heat power W/m2

Hp heat gain from people Btu/h

Table A.5. Parameters of residential water heating systems [55]

Parameter Description Unit

V tank volume of the tank gal
A tank area of the tank ft2

R tank thermal resistance of the tank °F · ft2 · h /Btu
f r flow rate gal/min
T inlet Inlet temperature of water °F
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