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Abstract

Recently, there has been growing interest in the provision of market services from
distributed energy resources (DERs). In pursuing this goal, demand response
(DR) aggregators continue to face challenges in retaining privacy and comfort for
end-users, mitigating scalability issues while controlling a large cohort of DERs
and handling uncertainties which are inevitable in a practical setting. This paper
presents an end-user privacy and comfort preserving, scalable, hierarchical con-
trol scheme for inverter-type air conditioners to provide real-time market services
in the presence of uncertainties. Privacy and scalability are achieved thorough
the adoption of the alternating direction method of multipliers (ADMM) frame-
work which ensures minimal reliance on local information whilst ensuring desired
reference tracking without compromising the end-user comfort. Benefiting from
the proposed non-conservative robust MPC design, the local control is able to ac-
count for mismatches in outdoor temperature predictions. The overall scheme is
validated using real data obtained from the Australian Energy Market operator.
The results demonstrate that the proposed approach can achieve desired track-
ing of the reference signal while regulating indoor temperature within a narrow
range (±1°C) from the nominal set-point. Besides, the robustness to uncertainties
is achieved without compromising computational performance and therefore the
approach is scalable.
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Notation
Throughout the paper, the following notation is practised. Bold-face letters

represents multi-dimensional arrays. R represents the set of real numbers, Rn rep-
resents the space of n-dimensional vectors with real entries, Rn×m represents the
space of n by m matrices with real entries, Z+ represents the set of non-negative in-
tegers, Z[i, j] represents the set of integers from i to j, In represents the n×n identity
matrix, 1n represents a n × 1 column vector consisting of ones, diag{x1, . . . , xn} is
the diagonal matrix formed by x1, . . . , xn as its diagonal elements, (·)T represents
the transpose operator, | · | is the absolute operator, ∥·∥2 represents the ℓ2-norm of a
vector, ∧ represents the logical AND operator, and A⊗B represents the Kronecker
product of matrices A and B.

1. Introduction

The global trend towards ‘clean energy’ has resulted in a dramatic increase
in the penetration of renewables in the generation mix over the past decade [1].
Whilst solar and wind energy have gained dominance in this transformation, their
highly intermittent nature has raised awareness among the network operators on
the need for additional reserve capacity to sustain the grid during supply-demand
imbalances.

Although preliminary reserve provisions were only limited to expensive con-
ventional generation, the recent upgrades in bi-directional communication be-
tween end-users and the grid, sophisticated metering infrastructure have inspired
the research community to explore the potential of ‘behind-the-meter’ distributed
energy resources (DERs) in the provision of real-time market services [2].

The inherited high thermal inertia has made thermostatically controllable loads
(TCLs) a promising DER candidate in the provision of electricity market services.
To this end, a plethora of literature has been published by exploiting characteristic
properties of TCLs in demand response (DR) and other market-based applications
[3–18]. For instance, the authors in [3] have proposed a data-driven approach to
optimise the total energy consumption of heating, ventilation, and air-conditioning
(HVAC) where a multi-objective formulation accounts for the optimal tradeoff be-
tween energy consumption and thermal comfort. However, the approach is only
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limited to demand management in a single facility. In [4], the authors have de-
veloped a feedback control mechanism and experimental validations have been
conducted to evaluate the performance of variable-speed HVAC systems in deliv-
ering frequency regulation. Similar to [3], this study focuses only on achieving
desired level performance with a single HVAC unit. Conversely, the authors in
[5] have utilised a ranking mechanism for an aggregate population of household
air conditioners based on their operating temperature for dispatch during a fre-
quency regulation event. Following a similar approach, the authors in [6] have
presented a stochastic-battery model and thereby employ a priority-stacked con-
trol scheme for TCLs to track a regulation signal. Furthermore, the authors in [7]
have implemented a model predictive control (MPC) scheme for aggregate con-
trol of variable-speed air conditioners where the performance metrics are aligned
with tracking the reference set-point signal and minimising thermal discomfort for
end-users. However, the authors assume perfect knowledge of individual thermal
characteristics of TCLs and accurate ambient temperature forecasts.

On the contrary, the authors in [8] have presented a centralised approach for
the control of TCLs where the uncertainty in ambient temperature is addressed via
a stochastic scenario-based optimisation approach. In addition to that, a stochastic
chance constrained MPC approach is proposed in [9] for building climate control
while addressing the variation in outdoor temperature. Furthermore, the authors
have utilised an affine disturbance feedback control policy to obtain a tractable
solution to the stochastic MPC problem. However, stochastic optimisation ap-
proaches often require the distribution of uncertainty to be known as a priori, for
example, outdoor temperature variation is assumed to follow a gaussian distri-
bution in [9]. Nonetheless, the distribution of uncertainty is hardly known for
most of the real-world applications [19] and therefore restricting the uncertainty
to follow a certain distribution often undermines the performance in a real-world
setting. On the other hand, stochastic optimisation approaches also require a sig-
nificant number of scenarios to model the uncertainty set [19], which is often
computationally prohibitive in the context of aggregate control of DERs.

To this end, the majority of the control approaches rely on a centralised control
framework, e.g., direct load control, where a DR aggregator has the sole author-
ity to control the entire population of consumer-owned DERs. Nonetheless, such
centralised schemes suffer from serious limitations due to: end-user privacy vio-
lations; inevitable scalability issues under large-scale aggregations of consumer-
owned devices [20]. Hence, it is undoubted that a control approach which meets
the expectations of the DR aggregator as well as the end-user is vital for an entic-
ing implementation in the provision of real-time market services.
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An alternative to centralised control is to implement distributed control [20]
whereby each DER is managed by a local controller. To date, several studies
have proposed distributed control schemes for TCLs to provide DR and electric-
ity market services [10–18]. For example, the authors in [10] have proposed a
hierarchical optimal control strategy for HVAC systems to provide regulation ser-
vices. Furthermore, the approach considers the tradeoff between economic in-
terests and thermal comfort without violating operational constraints of HVAC
systems. Nonetheless, perfect thermodynamic models of HVAC systems are con-
sidered in developing the overall control framework. In [11], the authors have pro-
posed a fully-decentralised coordinated control approach to control heats pumps
with the objective of minimising household surplus energy. Although end-user
privacy is preserved, reliance on neighbour-neighbour communication makes the
approach impracticable in a real-world setting. The authors in [12] have presented
a privacy-preserving iterative control approach where households communicate
with a central controller. Despite the applicability in energy arbitrage and conges-
tion management, the proposed method has failed to address the inaccuracies in
household demand profiles shared with the central controller.

In [13], a receding-horizon distributed control approach is presented to de-
liver ancillary services from TCLs. In this approach, each distributed agent is
responsible for monitoring and control of a small group of devices, hence there is
no guarantee that privacy is fully preserved at device level. In [14], a method
to regulate supply-demand balance with a price mechanism is developed with
distributed MPC and dual decomposition. Nevertheless, the poor convergence
characteristics of the dual decomposition method [21] undermines the overall per-
formance of the distributed control scheme in providing real-time services. A de-
centralised control scheme for ON-OFF type air conditioners based on stochastic
control is introduced in [15]; however, the aperiodic nature of the desired power
curves for individual air conditioners makes the approach inapplicable for real-
time market services. Apart from that, the control approach is also inconsistent
with variable-speed air conditioners where the power consumption is not limited
to either ON or OFF. The authors in [16] have proposed an Alternating Direction
Method of Multipliers (ADMM) based hierarchical control scheme for TCLs to
follow a generation signal; however, the uncertainties present in a practical set-
ting are not explicitly considered in the implementation of the control scheme.
Furthermore, the offline-optimisation based approach is only suited for providing
services in day-ahead markets. In [17], the authors have presented a distributed
control approach for TCLs based on Douglas-Rachford splitting. Despite the gen-
eralisation of the overall control approach under diverse performance metrics, the
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authors have failed to carry out a thorough analysis for a particular scenario while
accounting for uncertainties in real-world implementation.

In a different study [18], the authors have presented a hierarchical control
scheme based on MPC and ADMM for day-ahead and intra-day control of electro-
thermal devices. In this study, the uncertainty in thermal demand is modelled
via a robust optimisation approach where the bounds (range forecasts) of ther-
mal demand are assumed to be known. Thereafter, the concept of ‘uncertainty
budgets’ [22] is utilised to appropriately tune the robustness of the approach to
avoid unnecessary conservatism associated with the conventional robust optimi-
sation technique [23]. Nevertheless, the overall approach is a single-stage process
(without recourse) and all the control decisions are required to be made before
the uncertainties are revealed at a certain time instant. In this regard, setting the
robustness parameter at the most appropriate level is vital to obtain desired out-
comes of the overall control implementation. This is challenging as there is always
a trade-off between the desired performance and resiliency to uncertainties. On
the other hand, the application of ADMM to achieve generation-consumption bal-
ance among electro-thermal devices in this context is different from our approach
where air conditioners sufficiently adjust their consumption to follow a load set-
point signal. A summary of the literature on distributed control of DERs is given
in Table 1.

Table 1. A comparison of the existing literature on distributed control of behind-the-meter DERs

Ref. control approach privacy uncertainties
addressed?

Wang et al. [10]
regulation bidding controller+
power use following controller G# ×

Dengiz et al. [11] Iterative Desync Algorithm  ×

Dong et al. [12] an iterative algorithm  ×

Radaideh et al. [13] tracking problem + receding-horizon control  ×

Larsen et al. [14] MPC + dual decomposition G# ×

Tindemans et al. [15] decentralised stochastic control  ×

Burger et al. [16] ADMM + offline optimisation  ×

Halvgaard et al. [17] MPC + Douglas Rachford splitting  ×

proposed ADMM + robust MPC  ✓

 = fully considered; G# = partially considered; × = not considered;
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The existing literature suggests that distributed DER control schemes have the
potential to mitigate end-user data privacy concerns and scalability issues while
achieving the same level of performance of centralised control schemes. How-
ever, ignoring the effects of uncertainties in such a distributed control setting is
detrimental for DR aggregators when providing services in real-time electricity
markets. On the one hand, addressing uncertainties in distributed control schemes
via traditional robust optimisation techniques [23] result in extremely conservative
control approaches which a DR aggregator participating in real-time markets usu-
ally avoids. On the other hand, addressing conservatism in such approaches might
lead to intractable problems; hence, unscalable in a practical setting. To this end,
a tractable approach for distributed control of DERs under uncertainties is highly
favoured by retailers and DR aggregators to provide real-time market services.
Not only that, the majority of the control schemes based on air-conditioning loads
predominantly focus on achieving desired control from regular ON-OFF type air
conditioners even though there is a growing demand for inverter-type air condi-
tioners [24].

Fig. 1 illustrates key aspects of the proposed hierarchical control scheme as
opposed to a centralised control approach for the provision of real-time market
services from TCLs under uncertainties.

Motivated by the knowledge gap and to enhance the real-world implementa-
tion capability of TCLs to provide real-time market services, the major contribu-
tions of this work can be stated as follows:

• Developing an end-user privacy and thermal comfort preserving, hierarchi-
cal control scheme for DR aggregators to provide real-time services in elec-
tricity markets. The approach is developed using ADMM such that local
controllers in individual households optimise their economic interests whilst
a coordinating controller at the DR aggregator ensures precise tracking of
the load set-point signal.

• Addressing uncertainties associated with imperfect outdoor temperature fore-
casts at each household local controller level via a non-conservative and
computationally tractable robust control approach. To this end, a closed-
loop MPC scheme coupled with a causal disturbance feedback control pol-
icy is utilised.

• Ensuring the overall control scheme to be consistent with the operation of
modern inverter-type air conditioners.
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House 1 House i House nuncertainty ...

central controller

...

drawbacks
-- information-intensive 
-- computationally prohibitive 
-- not scalable

central controller-house interface
shared data 
-- thermal model parameters 
-- end-user thermal comfort limits 
-- real-time control set-points 
-- indoor temperature measurements 
-- uncertainty bounds

violates end-user data privacy

(a) Centralised control approach

DR Aggregator

un
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controller

central controller

household  
controller

household  
controller

...

advantages
-- less information-intensive 
-- computationally attractive 
-- scalable

local controller-central controller
interface

minimal information passing

 
shared data 
-- offline predictions of control set-points 
 

local controller-house interface
shared data 
-- thermal model parameters 
-- end-user thermal comfort limits 
-- real-time control set-points 
-- indoor temperature measurements 
-- uncertainty bounds

preserves end-user data privacy

(b) Proposed hierarchical control approach

Fig. 1. A comparison of the (a) centralised control approach and (b) proposed hierarchical
control approach for the control of TCLs under uncertainties (for simplicity, illustrations are only

provided for House 1).

The rest of the paper is organised as follows. Section 2 introduces the system
model and formulates the overall control problem. Section 3 describes the pro-
posed hierarchical robust control framework based on ADMM and robust MPC.
Section 4 outlines simulation results and section 6 concludes the paper.

2. System Model and Problem Description

2.1. Individual model
In this work, the provision of real-time market services is achieved from inverter-

type air conditioners. Compared to regular ON-OFF type air conditioners, inverter-
type air conditioners are capable of operating under continuous power levels [25].
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Assuming slow thermal dynamics relative to power tracking dynamics, a lin-
earised thermal model adopted from [26] and validated with experimental results
as in [27, 28] is utilised to develop the state-space model of an air-conditioning
system. For the ith inverter-type air conditioner, this can be expressed as:

xi(k + 1) = Ai xi(k) + Bi ui(k) + Di ṽi(k) + wi(k) (1a)
yi(k) = xi(k) (1b)

where k is the sampling instant, the state xi(k) ∈ R represents indoor tempera-
ture Ti(k); control input ui(k) ∈ R represents power consumption Pi(k) ∈ [ P i, P i ],
where P i is the minimum power consumption; P i is the rated consumption; exter-
nal input ṽi(k) ∈ R corresponds to the nominal outdoor temperature T̃ out

i (k) and
wi(k) ∈ R is the stochastic additive disturbance term associated with the uncer-
tainty in outdoor temperature. Considering full-state feedback, output yi(k) ∈ R
corresponds to measured indoor temperature. In addition to that, Ai, Bi,Di ∈ R
such that Ai = e−∆/RiCi , Bi = Ri ·

(
1 − e−∆/RiCi

)
and Di =

(
1 − e−∆/RiCi

)
, where Ri is

the thermal resistance, Ci is the thermal capacitance and ∆ is the sampling period.
Considering actual outdoor temperature vi to be a symmetric range forecast

centred at ṽi such that: vi ∈ [ṽi − v̂i, ṽi + v̂i], where v̂ > 0 is the semi-amplitude of
the maximum variation related to the uncertainty associated with vi, the bounded
uncertainty set for wi can be obtained as:

Wi =
{
wi : |wi| ≤ Di · v̂i

}
(2)

2.2. Aggregate model
Let n be the size of the population of inverter-type air conditioners indexed by

i. Since the dynamics of each air conditioning subsystem is independent of others,
the dynamics of the aggregate system can be represented as a stacked system of
individual models. This can be expressed as:

x(k + 1) = A x(k) + B u(k) + D ṽ(k) +G w(k) (3a)
y(k) = E x(k) (3b)

where x(k) =
[
x1(k) · · · , xn(k)

]T, u(k) =
[
u1(k) · · · , un(k)

]T, ṽ(k) =
[
ṽ1(k) · · · , ṽn(k)

]T,
y(k) =

[
y1(k) · · · , yn(k)

]T and w(k) =
[
w1(k) · · · ,wn(k)

]T. In addition to that,
A = diag{Ai}, B = diag{Bi}, D = diag{Di} for i = {1, . . . , n}, G = In and E = In.
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2.3. Problem Description
The goal of this work is to develop a robust control scheme for the provision

of real-time market services from residential air conditioners in the presence of
uncertainties. Aligned with this, it is assumed that the bids offered by the DR
aggregator in day-ahead markets are accepted prior to the event.

Let us consider a scenario where the DR aggregator receives a load set-point
reference signal Pref that should be tracked for Tdur of time. Following this, the
DR aggregator utilises robust min-max MPC for the provision of real-time market
services in the presence of uncertainties.

Considering the prediction horizon to be N ∈ Z+, the state prediction vector
for the aggregate system can be expressed as:

x(k) =
[
xT(k|k) . . . , xT(k + N|k)

]T
∈ Rn (N+1) (4)

where the notation x(·)(k + j|k) refers to the prediction of x in (k + j)th sampling
instant with the knowledge of information up to kth sampling instant. Following
a similar approach, the other vectors in the state space model can be expressed as
given in Appendix A.

Thereafter, the state prediction dynamics of the aggregate system can be ex-
pressed in a compact form as:

x(k) = A x(k|k) + B u(k) + D ṽ(k) +G w(k) (5a)
y(k) = E x(k) (5b)

where A ∈ Rn(N+1)×n,B,D,G ∈ RnN×nN and E ∈ Rn(N+1)×nN matrices are given in
Appendix B.

On the other hand, the design objective of the MPC controller at the DR ag-
gregator is considered to be minimising the linear cost of power consumption of
associated with air conditioners expressed as the stage cost:

ℓ j

(
x(k + j|k),u(k + j|k)

)
= ΛT(k + j|k) · u(k + j|k), ∀ j ∈ Z[0,N−1] (6)

where Λ(k + j) ∈ Rn is the electricity price vector for the houses at (k + j)th
sampling instant. The price vector can be either time-of-use tariffs or real-time
prices [29]. Taken together, the robust min-max MPC control problem at the DR
aggregator can be expressed as:

min
u

max
w

N−1∑
j=0

ℓ j

(
x(k + j|k),u(k + j|k)

)
(7a)
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subject to:

x(k) = A x(k|k) + B u(k) + D ṽ(k) +G w(k) (7b)
y(k) = E x(k) (7c)

y ≤ y(k + j|k) ≤ y, ∀ j ∈ Z[0,N−1] (7d)

u ≤ u(k + j|k) ≤ u, ∀ j ∈ Z[0,N−1] (7e)

1T
n · u(k + j|k) = Pref(k + j|k), ∀ j ∈ Z[0,N−1] (7f)

w(k + j|k) ∈ W, ∀ j ∈ Z[0,N−1] (7g)

In the open-loop min-max MPC implementation, (7a) corresponds to min-
imising the cost of consumption of electricity under the worst-case uncertainty
associated with outdoor temperature. The state-space model of the aggregate sys-
tem is described by (7b) and (7c). The indoor thermal comfort limits are described
by (7d), where y =

[
y

1
, . . . , y

n

]T
∈ Rn refers to the preferred lower set-point and

y =
[
y1, . . . , yn

]T
∈ Rn corresponds to the preferred upper set-point of indoor

temperature. The constraints on the power consumption of air conditioners are
given by (7e), where u =

[
u 1, . . . , u n

]T
∈ Rn is the lower limit of power consump-

tion and u =
[
u1, . . . , un

]T
∈ Rn is the upper-limit of power consumption (rated

consumption) for the population of air conditioners. Tracking of the reference
set-point signal Pref at each sampling instant is given by the hard constraint (7f).
In addition to that, (7g) describes the bounded, priori known set W ⊂ Rn, for
which the uncertainty associated with the prediction of outdoor temperature of
each house belongs to.

Nonetheless, the implementation of the robust receding horizon control imple-
mentation (7) at the DR aggregator is challenging due to:

• privacy violations as end-users are required to share information pertaining
to rated capacity of air conditioners, preferred indoor thermal comfort limits
(y

i
, y i ∀ i) and household thermal characteristics, i.e, (Ri,Ci)∀ i, with the DR

aggregator.

• full-state feedback associated with (7c) requires end-users to share real-time
or near real-time measurements of indoor temperature with the DR aggre-
gator for the entire control period. This also leads to end-user privacy vio-
lations.

• with the aggregation of a large number of end users (large n) to be able to
participate in real-time market services, the robust min-max MPC formula-
tion (7) generally leads to an intractable problem [30].
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Hence, an end-user privacy guaranteed, scalable and computationally tractable
control approach is proposed for the real-time provision of market services from
residential air conditioning loads under uncertainties.

3. Proposed Methodology

The overall idea is to develop a hierarchical control scheme which alleviates
privacy and scalability issues and at the same time mitigates the effects of exter-
nal sources of uncertainty. A summarised block diagram of the overall control
approach is given in Fig. 2.

Market Operator

Coordinating controller

DR Aggregator

Local controller

Robust MPC

Local controller Local controller

Hierarchical control with ADMM

Robust MPC Robust MPC

uncertainty

Fig. 2. A summarised block diagram of the overall control framework: local controllers at each
household and the coordinating controller at the DR aggregator are derived from decomposition
based on ADMM; derived local controllers employ robust MPC to account for uncertainties in

outdoor temperature v (only shown for House 1).

Based on a high-level view, the approach taken in this paper can be described
under three sections: transforming the centralised problem to its decentralised
form with ADMM; developing a computationally tractable, robust MPC scheme
coupled with a causal disturbance feedback policy at each local controller to ad-
dress uncertainties associated with outdoor temperature; establishing the coordi-

11



nation between local controllers and the DR aggregator via a coordinating con-
troller to achieve precise tracking of the reference set-point signal.

3.1. Decentralised alternative formulation based on ADMM
The control problem in section 2.3 is analogous to a typical resource sharing

problem due to the power balance constraint (7f). In the absence of (7f), the
solution to original problem (7) can be obtained by solving a set of subproblems
at individual households. Hence, ADMM technique [31] is utilised to transform
the centralised control problem to its equivalent decentralised form. The main
reason behind the selection of ADMM is its superior convergence characteristics
compared to other classical decomposition techniques [20].

In standard form, the resource sharing problem can be expressed as,

min
u1,...,un

∑ n
i=1 ℓi(ui) + g

(∑ n
i=1 ui

)
(8)

where n is the number of individual subsystems, the decision variables are ui ∈

Rm for i = 1, . . . , n, ℓi : Rm → R is the local cost function for the ith subsystem
and g : Rm×n → R is the shared objective term which takes

∑ n
i ui as an argument.

In other words, (8) represents a problem in which the local agent i minimises its
individual cost ℓi(ui), while minimising the shared objective g

(∑ n
i=1 ui
)

among all
local agents.

The scaled form of the ADMM for the sharing problem for νth iteration can
be expressed as follows [31]:

u(ν+1)
i = argmin

ui

(
ℓi(ui) + (ρ/2)

∥∥∥ui − u(ν)
i + u (ν)

− z (ν)
+ θ (ν)

∥∥∥2
2

)
(9)

z (ν+1)
= argmin

z

(
g
(
n z
)
+ (n ρ/2)

∥∥∥ z − θ(ν) − u (ν+1)
∥∥∥2

2

)
(10)

θ (ν+1) = θ (ν) + u (ν+1)
− z (ν+1) (11)

where superscript (ν) represents νth iteration, ρ > 0 is the augmented Lagrangian
parameter, u is the average of ui, z ∈ Rm is an auxillary variable such that z =
(1/n)

∑n
i=1 zi and θ ∈ Rm is the global scaled-dual variable.

In the context of the problem addressed in this work, the control action at
each local controller present in each household can be identified by (9). This can
be executed individually in parallel based on a local design objective li for all i.
On the other hand, (10) and (11) can be implemented on a coordinating controller
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(the mediating agent) whose primary goal is to achieve perfect tracking of the load
set-point signal at each sampling instant. This is governed by the shared objective:

g
(∑n

i=1 ui(k)
)
=
(∑n

i=1 ui(k) − Pref(k)
)2
, ∀ k (12)

In this manner, the control problem for the DR aggregator in section 2.3 can be
transformed into a hierarchical control problem with a local controller at each
household and a coordinating controller at the DR aggregator. It is worth men-
tioning here that, since g is chosen to be convex as in (12), choosing fi, ∀i to be
convex results in proper convergence of the ADMM scheme [31].

3.2. Local controller
Following the hierarchical control framework based on ADMM, the conven-

tional approach would be to implement robust min-max MPC at each controller
to assign control set-points for the air conditioner while taking account of fluc-
tuations in outdoor temperature. However, such an open loop control approach
is overly conservative and unrealistic [30] as the local controller determines air
conditioner set-points for the whole prediction horizon considering worst-case
uncertainty associated with outdoor temperature at every future time step.

To address this issue, a closed loop MPC approach with a causal disturbance
feedback policy of the form µk+ j|k

(
w(k|k), . . . ,w(k + j− 1|k)

)
is utilised [32]. Con-

sidering the ith air conditioning subsystem, the causal disturbance feedback con-
trol policy can be mathematically expressed as:

ui(k+ j|k) =
j−1∑

m=0

Ti(k+ j|k, k+m|k) ·wi(k+m|k)+ ũi(k+ j|k) ∀ j ∈ Z[0,N−1] (13)

where Ti(k + j | k, k + m | k) ∈ R and ũi(k + j | k) ∈ R are the decision variables
associated with the policy. This approach is similar to the concept of ‘recourse’
in multi-stage problems commonly discussed under affinely adjustable robust op-
timisation [33]. Based on (13), the control decision at the current step ui(k) is
only determined with optimisation (“here-and-now” decisions) and future control
decisions ui(k + j)∀ j ∈ Z[0,N−1] (which are affine functions of wi) are revealed
only after the uncertainties wi(k + m)∀m ∈ Z[0, j−1] are realised with the availabil-
ity of full-state feedback (“wait-and-see” decisions). In other words, the decision
on the current input is independent of uncertainties whereas all future inputs are
dependent on yet unknown disturbances. Unlike the traditional approach where
future input decisions are determined based on worst possible uncertainties at each
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step, this approach alleviates the conservatism whereby future input decisions are
determined only after the disturbances are determined.

Since the first input which is unaffected by uncertainties is only optimised,
the stage cost of the local controller problem is slight modified to consider the
uncertainty-free inputs as:

ℓi, j
(
xi(k + j | k), ũi(k + j | k)

)
= Λi (k + j | k) · ũi(k + j | k), ∀ i ,∀ j ∈ Z[0,N−1] (14)

where ũi(k + j | k) ∈ R is the uncertainty-free input at (k + j)th sampling instant
obtained from (13); Λi (k + j | k) ∈ R is the electricity price at (k + j)th sampling
instant for the ith air conditioner.

Hence, the closed-loop MPC problem for the ith local controller, LCi, after
applying ADMM for νth iteration at kth sampling instant can be expressed as:

min
Ti, ũi

max
wi

N−1∑
j=0

[
ℓi, j
(
xi(k + j | k), ũi(k + j | k)

)
+ (ρ/2)

(
ũi(k + j|k) − ũ(ν)

i (k + j) + ũ
(ν)

(k + j) − z (ν)(k + j) + θ (ν)(k + j)
)2]

(15a)

subject to:

xi(k) = Ai xi(k | k) + Bi ui(k) + Di ṽi(k) + wi(k) (15b)
yi(k) = Ei xi(k) (15c)

yi ≤ yi(k + j | k) ≤ yi, ∀ j ∈ Z[0,N−1] (15d)

ui ≤ ui(k + j | k) ≤ ui, ∀ j ∈ Z[0,N−1] (15e)

wi(k + j | k) ∈Wi, ∀ j ∈ Z[0,N−1] (15f)
ui(k + j | k) = µi, k+ j | k

(
w(k | k), . . . ,w(k + j − 1 | k)

)
, ∀ j ∈ Z[0,N−1] (15g)

The cost function in (15a) is derived from the ADMM decomposition given in (9).
Aligned with the causal disturbance feedback policy (13), the ADMM decision
variable is also chosen to be ũi rather than the original decision variable ui. The
state prediction dynamics for the ith subsystem are given by (15b) and (15c). The
output and input constraints are given by (15d) and (15e) respectively. The set
to which the uncertainty in outdoor temperature of ith air conditioning subsystem
belongs to is described by (15f) and the bounded set Wi is obtained from (2). The

14



causal disturbance feedback control policy for the ith subsystem is represented by
(15g).

Aligned with the nature of uncertainty associated with outdoor temperature
given by (2), the closed-loop MPC problem described by (15) can be formulated
as a convex quadratic programming problem (the derivation is given in Appendix
C). Subsequently, the problem at the local controller is computationally tractable
and can be easily solved with off-the-shelf solvers as compared to the centralised
control approach (7).

3.3. Coordinating controller
While each local controller minimises the cost of consumption of electricity

associated with the air conditioner, the objective of the coordinating controller is
to achieve desired tracking of the load set-point signal. In the context of ADMM
algorithm employed in this study, this can be realised with: 1) performing the z-
update similar to (10); 2) performing the θ-update similar to (11). Additionally,
aligned with the receding horizon implementation, the control problem for the
coordinating controller for νth iteration at kth sampling instant can be mathemat-
ically expressed as:

min
z

N−1∑
j=0

[
g
(
nz(k + j)

)
+ (nρ/2)

∥∥∥∥ z(k + j) − θ (ν)(k + j) − ũ
(ν+1)

(k + j)
∥∥∥∥2

2

]
(16a)

θ (ν+1)(k + j) = θ (ν)(k + j) + ũ
(ν+1)

(k + j) − z (ν+1)(k + j), ∀ j ∈ Z[0,N−1] (16b)

3.4. Convergence of the algorithm
Aligned with [31], the termination criteria for the receding horizon imple-

mentation of the sharing problem in ADMM form at kth sampling instant can be
expressed as:

∥ r(ν)(k) ∥2 ≤ ϵr, ∥ s(ν)(k) ∥2 ≤ ϵ s, ∀ k (17)

where r and s are the primal residual and dual residual as defined in Appendix
D, ϵr > 0 and ϵ s > 0 are the tolerances for the primal residual and dual residual
respectively.

Fig. 3 depicts the sequential information and control flow between local con-
troller LCi and the coordinating controller for at a certain sampling instant, let’s
say k. According to 1 in Fig. 3, LCi determines the uncertainty-immunised
predicted control sequence ũ(ν)

i (k + j) for j ∈ Z[0,N−1], for νth iteration after solv-
ing the closed loop MPC problem (15) and thereafter sends to the coordinating
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Fig. 3. The hierarchical control scheme depicting the control and information flow between ith
local controller (LCi) and the coordinating controller; only LCi is shown for clarity; solid lines
represent control flow; dotted-lines represent information flow; numbered-circles represent the

sequence of steps

controller. With similar information from all i, the coordinating controller cal-
culates the average ũ

(ν+1)
(k + j) for j ∈ Z[0,N−1] and determines z (ν+1)(k + j) by

solving (16a). In the next step, θ (ν+1)(k + j) is calculated as in (16b). Thereafter,[
u (ν+1)(k + j), z (ν+1)(k + j), θ (ν+1)(k + j)

]
is scattered among all the local controllers

as in 2 . This back-and-forth information sharing between a local controller and a
coordinating controller occurs until the termination criteria (17) is met. Let us say
that convergence is met at ν∗th iteration of the ADMM scheme. Subsequently, the
local controller applies the first control input of the predicted sequence ũ(ν∗)

i (k + j)
to the ith air-conditioning subsystem as in 3 . With full-state feedback, in the next
step, LCi measures the indoor temperature yi(k) and updates the system as shown
in 4 . Likewise, this procedure is repeated at each sampling instant until the end
of the demand management event.

It should be noted that this work assumes the existence of two-way communi-
cation between household local controllers and the coordinating controller via a
direct wired link such as copper, optical fibre or a wireless link such as microwave
[34]. These communication links can be utilised to send control signals and re-
ceive information from local controllers. Furthermore, the communication link is
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assumed to be perfect, i.e., free from bandwidth limitations and latency issues.
Some remarks about the key features of the proposed approach are as follows:

Remark (Privacy of end-users). Since each local controller acts as an interme-
diary between the house and the DR aggregator, a household does not need to
share sensitive information (Ri,Ci ∀ i) with the DR aggregator as in the control
approach (7). Instead, information is only shared with the local controller built in
its own premises. On the other hand, the deployment of local controllers eliminate
the requirement of state-estimation techniques [26, 35] for the DR aggregator to
measure indoor temperature for all the air conditioners. On the contrary, our ap-
proach is more realistic in the sense that only local controllers have full-state feed-
back capabilities to measure indoor temperature. Apart from that, our approach
relies on a coordinating controller to share minimal information, for example, of-
fline predictions of air conditioner control set-points ũ(ν)

i (k + j) for j ∈ Z[0,N−1] ∀ i,
and therefore does not require interactions among neighbouring local controllers.
This is in contrast to [17, 36] where the overall control implementation heavily
depends on interactions among local controllers. By means of aforementioned
strategies, it is guaranteed that end-user data privacy is preserved.

Remark (Handling uncertainties via a tractable approach). Unlike the direct ap-
plication of ADMM for the provision of real-time market services from air condi-
tioners, our approach further extends the scope to address the effect of uncertain-
ties in outdoor temperature in the local controller implementation. In this regard,
a closed loop MPC approach coupled with a causal disturbance feedback pol-
icy is utilised. This alleviates the conservatism associated with the consideration
of worst-case uncertainty in outdoor temperature. Most importantly, the overall
robust control approach is tractable and can be easily solved with existing com-
mercial solvers. In addition to that, the receding horizon control implementation
can also capture uncertainties associated with each air conditioning subsystem to
a certain extent.

Besides, this conceptual framework readily allows cost-effective local con-
troller implementation by embedding as an additional control feature in typical
home energy management systems [37]. The overall control scheme is explained
in Algorithm 1 in Appendix E.

4. Results

In order to validate the proposed approach, it is assumed that the DR aggrega-
tor receives a load-set point reference signal which should be tracked for Tdur = 2

17



12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00

Time [hh:mm]

32

33

34

35

O
u

td
o

o
r 

te
m

p
er

at
u

re
 [
°
C

]

uncertainty bounds

nominal

Fig. 4. The nominal variation of outdoor temperature and a range forecast with v̂ = 1°C

hr, from 12:00 - 14:00 on 02 February 2020. The nominal outdoor temperature
profile obtained from [38] is given in Fig. 4. Assuming that all the households
are spread across the same geographical region, the nominal outdoor temperature
profile is assumed to be the same.

The load set-point signal is constructed from the scheduled generation and de-
mand data obtained from [39]. First, the scheduled generation is compared against
the demand and thereafter normalised. Next, the baseline consumption is calcu-
lated as in [7] by assuming the desired set-point temperature to be 23°C. Finally,
the overall load set-point signal is constructed by combining the normalised refer-
ence signal and assuming 15% regulation capacity from the baseline consumption.

The upper limit of power consumption (ui ∀ i) is considered to be normally
distributed between 2.5 ∼ 3.5 kW and the lower limit (u i ∀ i) is assumed to be
zero. Aligned with [26], Ri ∀ i is assumed to be normally distributed between
1.5 ∼ 2.5°C/kW; Ci ∀ i is normally distributed between 1.5 ∼ 2.5 kWh/°C; ηi

=2.5 for all the air conditioners; The lower-thermal comfort limit, x = 22°C;
upper-limit x = 24°C; for all the air conditioners. The initial indoor temperature
xi(k|k)∀ i is assumed to be 23°C. Assuming that end-users are price-takers and
therefore can respond to real-time prices, the spot price of electricity obtained
from [39] is employed in the household local controller problem (15).

For the MPC scheme, the sampling time (∆) is chosen to be 5-mins to com-
ply with the operation of the National Electricity Market (NEM) [39]; the pre-
diction horizon (N) is chosen to be 15-mins. For the ADMM scheme, ρ = 1,
ϵr = ϵ s = 1e-3. The algorithms are written in MATLAB 2019a together with
YALMIP toolbox [40] and Gurobi 8.0.1 [41] is used as the solver on a computing
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facility equipped with Intel(R) Xeon(R) CPU E5-2680 v3 2.50GHz and 64 GB
RAM memory.

In order to assess the effect of uncertainties on the performance of the overall
control scheme, simulations are carried out for the following scenarios based on
the degree of uncertainty associated with outdoor temperature (v̂) in each house-
hold local controller problem described in section 3.2:

• Scenario 1: the nominal scenario where perfect predictions of outdoor tem-
perature are available at each household local controller level, i.e., the case
where the outdoor temperature profile is unaffected by uncertainties.

• Scenario 2: the outdoor temperature profile is affected by uncertainties such
that v̂i = 0.5°C for all i

• Scenario 3: the outdoor temperature profile is affected by uncertainties such
that v̂i = 1.0°C for all i

for a population of n = 500 where each local controller attempts to minimise the
cost of consumption of electricity described in (15). It is worth mentioning that, in
the absence of uncertainties, i.e., the nominal scenario, the local controller robust
MPC problem (15) boils down to a simple quadratic programming problem.

The load set-point tracking performance of the proposed hierarchical robust
MPC scheme under different scenarios is depicted in Fig. 5. According to that,
the tracking performance is found to be nearly identical for all the scenarios. An-
alytical calculation of mean absolute error (MAE) results in 0.0051 kW, 0.0054
kW, 0.0055 kW for Scenario 1, Scenario 2 and Scenario 3 respectively. Although
MAE tends to increase as the tightness of v̂ is reduced, much smaller values rela-
tive to the load set-point signal suggests that tracking performance of the proposed
distributed control scheme is resilient against uncertainties in outdoor temperature
forecasts.

Moving on to the corresponding indoor temperature and power consumption
plots, it can be seen from Fig. 6 that under Scenario 1, Scenario 2 and Scenario
3, the proposed control scheme is able to preserve thermal comfort for end-users
by managing the operation within preferred thermal limits [22 ∼ 24]°C. A closer
inspection of the corresponding power consumption profiles also suggest that air
conditioners tend to follow an identical profile for most part of the operation.
This clearly gives the intuition behind the ADMM approach in sharing problem,
where identical control actions are implemented across the population of air con-
ditioners in order to reach consensus. However, the periods where air conditioners
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Fig. 5. The tracking performance for n = 500 under Scenario 1; Scenario 2 and Scenario 3. The
MAE for Scenario 1: 0.0051 kW; Scenario 2: 0.0054 kW and Scenario 3: 0.0055 kW.

tend to deviate from the consensus-based profile, are to manage the indoor tem-
perature within preferred limits. For example, when the local MPC controller
foresees a violation of indoor temperature limits if the control inputs follow the
ADMM-based profile in a future step, it steers the control set-point away from the
consensus-based profile to maintain the operation within preferred thermal limits.
Even though this will lead to a mismatch in the aggregate tracking performance,
the air conditioners which have the capacity to provide additional response with-
out violating thermal limits, e.g., air conditioners with high R and C, actively
adjust their consumption to achieve desired tracking performance. Likewise, the
overall control scheme can provide desired tracking performance while ensuring
that end-user thermal comfort is not compromised.

Comparing the simulation results to study the effect of uncertainties, it is ob-
served that the response rate of reaching thermal bounds is slower for the nominal
scenario as compared to Scenario 2 and Scenario 3. Thus, fewer fluctuations of
the power consumption profiles from the desired profile is observed as in Fig. 6a.
Nevertheless, as the degree of uncertainty increases, the randomness of the indoor
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(a) Scenario 1:Nominal scenario
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(b) Scenario 2: with v̂ = 0.5°C
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(c) Scenario 3: with v̂ = 1.0°C

Fig. 6. The variation of indoor temperature and power consumption of air conditioners for
Scenario 1 (a); Scenario 2 (b); Scenario 3 (c) with n = 500.

21



12:00 12:10 12:20 12:30 12:40 12:50 13:00 13:10 13:20 13:30 13:40 13:50 14:00

Time [hh:mm]

2.2

2.4

2.6

P
o
w

e
r 

[k
W

]
Mean of power consumption

12:00 12:10 12:20 12:30 12:40 12:50 13:00 13:10 13:20 13:30 13:40 13:50 14:00

Time [hh:mm]

0.25

0.3

0.35

0.4

P
o
w

e
r 

[k
W

]

Standard deviation of power consumption

Fig. 7. The variation of mean and standard deviation of power consumption of air conditioners
for Scenario 1; Scenario 2; Scenario 3 with n = 500.

temperature profile for air conditioners tends to increase as seen in Fig. 6b and
Fig. 6c. This will result in some air conditioners reaching their thermal limits
much earlier than the nominal scenario as seen in the indoor temperature profile
for Scenario 2 and Scenario 3. To this end, the robust MPC controller at each
house follows a non-conservative approach whereby the consumption sufficiently
controlled to mitigate indoor temperature violations. This is clearly seen in the
power consumption profile after 13:15 for Scenario 2 and Scenario 3, where fre-
quent fluctuations in power consumption profiles are observed compared to the
nominal scenario. Nonetheless, the tracking performance is still maintained with
additional power adjustments provided by many of the air conditioners operat-
ing closer to the temperature set-point. This is counteractive to the conventional
approach where control set-points are determined considering the worst-case out-
door temperature variations even if the indoor temperature remains closer to the
nominal set-point. To summarise, larger the bounds of uncertainty in outdoor tem-
perature, greater it compromises the tracking performance of the overall control
scheme.
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Looking at Fig. 7, it is evident that the mean consumption of air-conditioners
remains unchanged for all the scenarios and tend to follow a profile similar to the
reference set-point signal in Fig. 5. This can be explained with the principle be-
hind the ADMM formulation of the sharing problem where consensus is reached
when local controllers set the power consumption at the mean value of the popula-
tion. On the other hand, the profile of standard deviation varies for each scenario
approximately after 12:40 depending on the number of devices that deliberately
adjust their consumption from the identical profile to mitigate thermal comfort
violations. In fact, divergence from the nominal standard deviation profile gets
larger as the degree of uncertainty in outdoor temperature increases.

Additionally, one could argue that the proposed scheme will deliver desired
load set-point tracking performance only in the presence of a robust outdoor tem-
perature forecasting algorithm, i.e., under tight bounds of v̂. However, under a
short MPC prediction horizon (N = 15-mins), the outdoor temperature deviations
are likely to be negligible due to slow thermal dynamics relative to power tracking
dynamics. Not only that, the feedback loop inherent in the MPC scheme itself will
also account for mismatches in outdoor temperature over the prediction horizon
(N). Nevertheless, to give the reader a flavour of the accuracy of existing outdoor
temperature forecasting algorithms, Bureau of Meteorology (BoM) – Australia
can forecast outdoor temperature up to an accuracy of 2°C from the actual value
[42]. With regard to the determination of uncertainty bounds, error metrics such
as maximum absolute error, standard deviation can be used in the presence of an
outdoor temperature forecasting algorithm. Alternatively, historical data on out-
door temperature measurements can be accommodated in estimating the bounds
of uncertainty in the absence of a forecasting algorithm.

5. Discussion

The computational performance of the overall control scheme, the conver-
gence behaviour of the ADMM-based implementation, the benefits of the pro-
posed scheme over existing work in preserving thermal comfort and the efficacy
of the proposed approach in minimising consumption and emission costs are dis-
cussed in detail in the following sections.

5.1. Scalability of the approach
Considering a scenario where the DR aggregator tracking the reference sig-

nal in real-time for Tdur = 2 hours, the total time taken by the proposed control
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algorithm for the overall execution of the task, i.e., total execution time, under
different scenarios is summarised in Table 2.

Table 2. Comparison of the total execution time for different scenarios under different
aggregation sizes (n)

Aggregation size
(n)

Total execution time under
the nominal scenario

(min)

Total execution time
in the presence of uncertainties

(min)

v̂ = 0.5°C v̂ = 1.0°C

100 4.748 5.135 5.478
500 19.85 20.31 20.31

1000 39.51 40.38 40.23
— simulations are performed on a computing facility equipped with Intel(R) Xeon(R)
CPU E5-2680 v3 2.50GHz and 64 GB RAM memory.
— based on parallel execution of the local controller problem (15).

It is evident from Table 2 that the proposed control algorithm is able to com-
plete the overall execution of tracking the reference signal in real-time within 2
hours = 120 mins, under all the scenarios. Hence, it can be concluded that the
overall control approach is scalable. What is interesting about the data in the table
is that the proposed robust hierarchical control scheme is able to solve the tracking
problem in approximately linear time for v̂ = 0.5°C and v̂ = 1.0°C. This gives a
clear intuition that unlike the conventional robust min-max MPC approach which
is computationally intractable, the causal disturbance feedback control policy em-
ployed in this work is able to determine a tractable solution to the local controller
robust MPC problem at each sampling instant of the overall control operation.
Moreover, the computational performance under v̂ = 0.5°C and v̂ = 1.0°C is even
closer to the nominal scenario where a simple quadratic programming problem is
solved at each local controller. It is also worth mentioning that unlike the exe-
cution of the overall control algorithm on a single computing facility as followed
in the work, the cyber-physical implementation is arranged such that each local
controller and the coordinating controller execute their own algorithms indepen-
dently. In fact, this will further enhance the scalability of the overall approach for
aggregations even beyond n = 1000.

On the other hand, Table 2 only provides information on the computational
performance of the overall approach for the uncertainty in outdoor temperature
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varying such that v̂ = 0.5°C and v̂ = 1.0°C. In fact, these bounds of uncertainty
are aligned with the typical forecast accuracy attained by the BoM [42]. Again,
this is obvious as ±1.5 °C and ±2.0 °C deviations of outdoor temperature from the
nominal value is far-from reality when an MPC prediction horizon of 15-mins is
considered. Nonetheless, given thermal comfort limits for end-users, the proposed
approach can be employed to determine a performance bound, i.e., the degree of
uncertainty in outdoor temperature up to which the overall problem results in a
feasible solution.

5.2. Convergence of the ADMM algorithm
The convergence of the primal residual (r) and the dual residual (s) for n = 500

under the Scenario 2 is illustrated in Fig. 8.
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Fig. 8. Convergence of the primal residual (r) and the dual residual (s) for Scenario 2 under
n = 500
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It is evident from Fig. 8 that the primal residual saturates around the 5th it-
eration whereas the dual residual reaches the lower-bound ϵ s = 1e − 3, after the
second iteration at each sampling instant denoted by k. Since a receding horizon
control framework is implemented in this work, the ADMM convergence criteria
described in section 3.4 should be met at each sampling instant before the next
step is reached. In this regard, the saturation of the primal residual results in the
iterative algorithm failing to progress at a certain step before the overall system is
updated at the next sampling instant which is 5-mins. To this end, the technique
double termination criteria can be utilised. In other words, an additional termi-
nation criteria can be employed for the overall scheme along with (17). One such
alternative criteria would be to introduce an upper-bound on maximum ADMM
iterations at a certain step. However, such an upper-bound should be chosen with
care as there is always a trade-off between the tracking performance and the total
execution time under the decision of termination criteria in ADMM.

5.3. Comparison with existing approaches
The proposed ADMM-based robust MPC approaches is compared with two

other commonly found approaches: 1) end-user thermal constraints are explicitly
considered whereas the robustness to uncertainties is not explicitly considered; 2)
both end-user thermal constraints and robustness to uncertainties are not explicitly
considered. It is worth highlighting that the majority of existing work in Table 1,
for example, [13, 14, 16, 17] fall into the category where the effect of uncertainties
are neglected even though end-user thermal constraints are explicitly considered.

Table 3. Comparison of thermal comfort preservation and feasibility of the control scheme with
and without robustness against uncertainties in outdoor temperature for n = 500 under Scenario 2

and Scenario 3

Approach
Thermal comfort

preserved?
Feasibility of

MPC

v̂ = 0.5°C v̂ = 1.0°C v̂ = 0.5°C v̂ = 1.0°C

w/o robust MPC (w/ thermal constraints) ✓ ✓ × ×

w/o robust MPC (w/o thermal constraints) × × ✓ ✓

proposed ✓ ✓ ✓ ✓

It can be seen from the data in Table 3 that, although end-user thermal comfort
limits are considered, the absence of knowledge on the uncertainty in outdoor tem-
perature leads to an infeasible MPC problem in the first approach. For instance,
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the MPC scheme reaches infeasibility at 13:55 under v̂ = 0.5°C and at 13:45
under v̂ = 1.0°C. This is because the uncertainty in outdoor temperature pushes
indoor temperature towards lower (22°C) and upper (24°C) margins and the MPC
scheme is no longer able to adjust power consumption to mitigate temperature
violations beyond a certain point. On the other hand, when indoor temperature
constraints are dropped, feasibility of the MPC scheme is guaranteed in the pres-
ence of uncertainties at the expense of end-user thermal comfort violations. For
instance, 163 out of 500 and 165 out of 500 households experience thermal com-
fort violations under v̂ = 0.5°C and v̂ = 1.0°C respectively. These temperature
violations will grow further as the uncertainty bound (v̂) increases. On the con-
trary, the proposed approach ensures a feasible MPC problem while preserving
end-user thermal comfort limits under partial knowledge of uncertainty in out-
door temperature.

To evaluate the effectiveness of the proposed approach in minimising costs,
the cost of purchasing electricity in the absence of a DR event is calculated with
the aid of average spot price on 02 February 2020 obtained from [39] and then
compared against cost of purchasing electricity under the influence of a DR event
for a period of 2 hours from 12:00 to 14:00. This results in an hourly saving
of 37.60 A$ (Australian Dollars) which is equivalent to a 54.8% cost reduction
compared to the base case with 500 air-conditioning units. On the other hand,
the CO2 emission factor for Queensland obtained from [43] is used to obtain a
measure of emission savings by replacing the typical grid operation with end-
user demand management. This equates to an average reduction of 944.14 kg
CO2-e/hr during the DR event. Therefore, it can be concluded that the proposed
demand management scheme is cost-beneficial for and climate-friendly.

6. Conclusion

In this study, an end-user privacy and thermal comfort preserving, hierarchical
control scheme based on ADMM and robust MPC is proposed for the control of
inverter-type air conditioners to provide real-time electricity market services in the
presence of uncertainties. Under the proposed hierarchical control framework, a
local controller at each household minimises the cost of consumption of electricity
associated with the air conditioner in the presence of outdoor temperature forecast
errors whereas a coordinating controller at the DR aggregator ensures that the
collective response from air conditioners follow the market operator specified load
set-point signal. The overall control scheme is validated using real data obtained
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from the Australian Energy Market Operator (AEMO). Some of the key insights
gained from the study are as follows:

• The overall control scheme is able to achieve precise tracking of the load-
set point signal with mean absolute error less than 0.0055 kW up to ±1°C
variation of outdoor temperature from its forecasted value.

• The closed-loop MPC approach based on a causal disturbance feedback pol-
icy is non-conservative as well as tractable. Furthermore, the approach can
achieve the same level of computational performance of the scenario where
perfect predictions of outdoor temperature are available. This is a notable
improvement over the conventional worst-case min-max MPC approach.

• Given end-user thermal comfort limits, the proposed control scheme can
be employed to determine a performance bound on handling uncertainties
associated with outdoor temperature.

• A cost-beneficial real-world implementation of the household local con-
troller can be realised by embedding its control features in existing home
energy management systems.

The findings of this study will be of importance to retailers and DR aggregators
in devising advanced control architectures to maximise their social welfare in fu-
ture electricity markets where active participation of consumer-owned DERs is
prevalent.

The future work will be to extend the control capabilities of the proposed ap-
proach to account for factors such as: external disturbances due to humidity, mis-
matches in the estimation of household thermal parameters. In addition to that,
enhancing the resilience of the overall control approach against latency and im-
perfections in the bidirectional communication infrastructure is also an interesting
research direction.

Appendix A. Representation of vectors in the state prediction dynamics and
output prediction dynamics of the aggregate system

For the aggregate system, the input vector u(k), exogenous input vector ṽ(k),
stochastic additive disturbance vector w(k) in the state prediction dynamics and
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y(k) in the output prediction dynamics can be expressed as given below.

u(k) =
[
uT(k|k), . . . ,uT(k + N − 1|k)

]T
∈ Rn N

ṽ(k) =
[
ṽT(k|k), . . . , ṽT(k + N − 1|k)

]T
∈ Rn N

w(k) =
[
wT(k|k), . . . ,wT(k + N − 1|k)

]T
∈ Rn N

y(k) =
[
yT(k|k), . . . , yT(k + N|k)

]T
∈ Rn (N+1)

Appendix B. Compact state prediction model of the aggregate system

For the compact state prediction of the overall model described by (3), the
matrices A ∈ Rn(N+1)×n,B,D,G ∈ Rn(N+1)×nN and E ∈ Rn(N+1)×n(N+1) such that,

A =


In

A
A2

...
AN


B =



B 0 · · · · · · · · ·

AB B 0 · · · · · ·

A2B AB B 0 · · ·
...

...
...
. . .

...

AN B AN−1B · · · · · ·
. . .



D =



D 0 · · · · · · · · ·

AD D 0 · · · · · ·

A2D AD D 0 · · ·
...

...
...
. . .

...

AN D AN−1D · · · · · ·
. . .


G =



In 0 · · · · · · · · ·

A In 0 · · · · · ·

A2 A In 0 · · ·
...

...
...
. . .

...

AN AN−1 · · · · · ·
. . .


and E = E ⊗ IN+1.

Appendix C. Tractable formulation of the closed-loop MPC with a causal
disturbance feedback policy

Considering the ith air conditioning subsystem, the state and input constraints
can be represented in a compact form as:

Zi := {
(
xi(k + j|k), ui(k + j|k), vi(k + j|k)

)
∈ R × R × R

|di xi(k + j|k) + ei ui(k + j|k) + fi ṽi(k + j|k) ≤ gi},∀ j ∈ Z[0,N−1] (C.1)

where the vectors di, ei, fi and gi ∈ Rs.
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Furthermore, the causal disturbance feedback control policy can be expressed
as:

ui(k+ j|k) =
j−1∑

m=0

Ti(k+ j|k, k+m|k) ·wi(k+m|k)+ ũi(k+ j|k) ∀ j ∈ Z[0,N−1] (C.2)

Let us define the vector ũi(k) as,

ũi(k) :=
[
ũi(k|k) . . . , ũi(k + N − 1|k)

]T
∈ RN (C.3)

The strictly lower triangular matrix Ti ∈ RN×N as,

Ti(k) :=


0 · · · · · · 0

Ti(k + 1|k) 0 · · · 0
...

. . .
. . .

...
Ti(k + N − 1|k) · · · Ti(k + N − 1|k + N − 2) 0

 (C.4)

Hence, the input policy (C.2) can be written in a compact form as

ui(k) = Ti(k) · wi(k) + ũi(k) (C.5)

Consequently, the admissible
(
Ti(k), ũi(k)

)
can be defined as:

Πi(xi) :=



(
Ti(k), ũi(k)

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
Ti(k), ũi(k)

)
satisfies (C.5), xi = xi(k | k)

xi(k + j + 1|k) = Aixi(k + j|k) + Biui(k + j|k)
+ Diṽi(k + j | k) + wi(k + j | k)

ui(k + j|k) =
j−1∑

m=0

Ti(k + j|k, k + m|k)wi(k + m|k)+

ũi(k + j|k)(
xi(k + j|k), ui(k + j|k), ṽi(k + j|k)

)
∈ Zi

wi(k + j|k) ∈Wi, ∀ j ∈ Z[0,N−1]


(C.6)

Considering the state prediction dynamics for the ithe subsytem,:

xi(k) = Ai xi(k|k) + Bi ui(k) + Di ṽi(k) +Gi wi(k) (C.7)
yi(k) = Ei xi(k) (C.8)
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where Ai ∈ RN can be derived from the overall state prediction dynamics given
in Appendix B as Ai =

[
1, Ai, A2

i , . . . , A
N−1
i

]T
. Similarly, Bi,Di,Gi ∈ RN×N and

Ei = IN can be obtained.
Now define Di := di ⊗ IN , Ei := ei ⊗ IN , Fi := fi ⊗ IN and Gi := gi ⊗ IN . Then

the predicted state and input constraints can be written as:

Di xi(k) + Ei ui(k) + Fi ṽi(k) ≤ Gi (C.9)

Substituting the predicted state dynamics xi(k) = Aixi(k|k) + Biui(k) + Diṽi(k) +
Giwi(k) in (C.9) yields:

(Di Bi + Ei) · ui(k) +Di Gi · wi(k) + (Di Di + Fi) · ṽi(k) ≤ Gi −Di Ai xi(k|k)

Substituting Ji = Di Bi + Ei, Ki = Di Gi, Li = Di Di + Fi, Mi = −Di Ai and also
substituting (C.5) gives,

Ji ũi(k) + (Ji Ti(k) +Ki) · wi(k) ≤ Gi +Mi xi(k|k) − Li ṽi(k) (C.10)

Hence, the admissible set can be written as:

Πi(xi) :=


(
Ti(k), ũi(k)

)
∣∣∣∣∣∣∣∣∣∣∣∣
(
Ti(k), ũi(k)

)
satisfies (C.5)

Ji ũi(k)+
max

wi(k)∈WN
i

(JiTi(k) +Ki) wi(k) ≤ Gi +Mixi(k|k) − Liṽi(k)


(C.11)

Note that the uncertainty associated with outdoor temperature is bounded such
that,

Wi =
{
wi s.t. |wi| ≤ Di · v̂i

}
(C.12)

In addition to that, wi(k) = Di · v̀i(k) at time step k, where v̀i(k) ∈ [−v̂i, v̂i] is the
deviation of actual outdoor temperature from the nominal value at kth sampling
instant.

Define v̀i(k) =
[
v̀i(k|k), . . . , v̀i(k + N − 1|k)

]T
∈ RN and define Ji := Gi ∈ RN×N

such that wi(k) = Ji v̀i(k). By applying dual norm and row-wise maximisation,
(C.11) simplifies to:

Πi(xi) :=

(Ti(k), ũi(k)
) ∣∣∣∣∣∣∣
(
Ti(k), ũi(k)

)
satisfies (C.5)

Ji ũi(k) + |JiTi(k) Ji +Ki Ji|1 ≤ Gi +Mixi(k|k) − Liṽi(k)


(C.13)
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Note that, xi(k|k) is the initial indoor temperature and ṽi(k) is the nominal variation
of outdoor temperature which are available as priori information.

Thereafter, adding slack variables to replace the absolute operator in (C.13)
gives:

Πi(xi) :=


(
Ti(k), ũi(k)

) ∣∣∣∣∣∣∣∣∣∣
(
Ti(k), ũi(k)

)
satisfies (C.5), ∃Ψi s.t.

Ji ũi(k) +Ψi 1 ≤ Gi +Mixi(k|k) − Liṽi(k)
−Ψi ≤ (Ji Ti(k) Ji +Ki Ji) ≤ Ψi

 (C.14)

The admissible set in (C.14) is composed of affine constraints of (Ti(k), ũi(k), Ψi),
hence convex.

Consequently, the closed loop robust MPC problem can be reformulated as a
convex programming problem as follows:

min
Ti, ũi,Ψi

N−1∑
j=0

[
ℓi, j
(
xi(k + j | k), ũi(k + j | k)

)
+ (ρ/2)

(
ũi(k + j|k) − ũ(ν)

i (k + j) + ũ
(ν)

(k + j) − z (ν)(k + j) + θ (ν)(k + j)
)2]

(C.15a)

subject to:
Ti(k + j | k, k + m | k) = 0 ∀ j ≤ m (C.15b)

Ji ũi(k) +Ψi 1 ≤ Gi +Mi x(k|k) − Li ṽi(k) (C.15c)
−Ψi ≤ (Ji Ti(k) Ji +Ki Ji) ≤ Ψi (C.15d)

where Ti ∈ RN×N ,ũi ∈ RN and Ψi ∈ RN are the decision variables. ■

Appendix D. Convergence of the overall algorithm

Based on the receding horizon implementation for the sharing problem in
ADMM form, the primal residual (r) and the dual residual (s) for νth iteration
at kth sampling instant can be expressed as:

r(ν)(k) =
[
ũ (ν)

1 (k|k) − z (ν)(k|k), . . . , ũ (ν)
1 (k + N − 1|k) − z (ν)(k + N − 1|k), . . . ,

ũ (ν)
n (k|k) − z (ν)(k|k), . . . , ũ (ν)

n (k + N − 1|k) − z (ν)(k + N − 1|k)
]

(D.1)

s(ν)(k) = −ρ
(
z (ν+1)(k|k) − z (ν)(k|k), . . . , z (ν+1)(k + N − 1|k) − z (ν)(k + N − 1|k)

)
(D.2)
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Algorithm 1: The proposed approach based on ADMM and robust MPC
Input: Tdur, Pref(k + j), ṽ(k + j) for j ∈ Z[0,Tdur−1], step-size ∆, prediction horizon N

1 Initialise ρ, ϵr, ϵ s for ADMM;
2 for τ = k : k + Tdur − 1 do
3 set ν = 1 ;
4 Initialise ũ (ν)

i , z
(ν)
i ∀ i, θ (ν) ;

5 Calculate ũ
(ν)

and z (ν) ;
6 do
7 for i = 1 : n do
8 function Local controller problem:

Input: Ai, Bi, Di, Ei u i, ui, y
i
, yi

9 Solve subproblem LC i given by (C.15);
10 Send ũ(ν)

i (τ + j) for j ∈ Z[0,N−1] to the coordinating controller as in step
1 ;

11 end
12 end
13 function Coordinating controller problem:
14 Determine z(ν+1)(τ + j) for j ∈ Z[0,N−1] by solving (16a);
15 Update θ (ν+1)(τ + j) for j ∈ Z[0,N−1] as in (16b);
16 Broadcast [z(ν+1)(τ + j), θ (ν+1)(τ + j)] for j ∈ Z[0,N−1] among local

controllers as in step 2 ;
17 end
18 set ν = ν + 1;
19 while (r(ν−1)(τ) ≤ ϵr) ∧ (s(ν−1)(τ) ≤ ϵ s);
20 for i = 1 : n do
21 function MPC update:
22 Apply the first control input u(ν∗)

i (τ) as in step 3 ;
23 Measure yi(τ) and update LC i as in step 4 ;
24 end
25 end
26 end

Appendix E. The overall algorithm for the proposed approach based on ADMM
and robust MPC
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