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ABSTRACT
This paper presents an end-user privacy and thermal comfort preserving approach for resi-
dential thermostatically controllable loads (TCLs) to provide demand response (DR) in grid
services under uncertainties. Unlike the standard approach whereby a central utility-level con-
trol is used to control end-users loads, this paper splits the control effort between a central
coordinating controller and local robust controllers. The Lagrangian relaxation (LR) method
is applied by relaxing the power tracking constraint to obtain a hierarchical control framework
with a local controller at each household level and a coordinating controller at the central
utility level. Household-level local controllers are based on robust model predictive control
(MPC) that relies on minimum household-specific information while accounting for thermal
model parameter uncertainties and forecast errors associated with exogenous inputs. Consid-
ering inverter-type air conditioners as the TCL, the approach is validated using a practical
signal corresponding to the Australian Energy Market Operator. The results demonstrate that
accurate tracking of the load set-point signal can be achieved under a considerable range of
uncertainties while preserving thermal comfort for end-users. Furthermore, the proposed DR
scheme is computationally tractable and robust for real-world implementation.

KEYWORDS
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1. Introduction

The dramatic increase in highly intermittent renewable energy sources in the generation mix
has heightened the need for additional reserves to manage the secure and reliable operation
of the power grid. Although early stages of reserve provisions were limited to conventional
supply-side approaches, the recent advancements in two-way communication between the
end-user and the grid have shifted the attention of the scientific research community and
industry practitioners to explore the potential of consumer-centric approaches such as demand
response (DR) in enhancing grid reliability (Callaway & Hiskens, 2011).

Due to high thermal inertia, thermostatically controllable loads (TCLs) are considered to
be promising household controllable loads that can provide DR services without compromis-
ing end-user comfort. Different from traditional load shedding schemes where the system
operator sends a broadcast signal and household appliances are required to be turned OFF for
a specific duration (Palensky & Dietrich, 2011; Thomas, Sharma, & Nazarathy, 2019), TCLs,
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when aggregated together, can effectively participate in wholesale markets and ancillary ser-
vices while adjusting their power consumption to track the reference set-point (Callaway &
Hiskens, 2011).

To this end, there is a large volume of published studies exploring the potential of TCLs
providing DR for local network management and electricity market services. For instance,
Erdinc, Tascikaraoglu, Paterakis, and Catalao (2019) have proposed a centralised temper-
ature set-point control strategy for consumer-owned heating-ventilation-air-conditioning to
provide DR during peak hours. Furthermore, end-users are awarded energy credits for their
contribution during the DR event. In Hu, Li, Fang, and Bai (2018), a scalable aggregate con-
trol framework is developed for air-conditioners and water heaters to provide DR services. In
this scheme, the solution to a multi-objective optimisation problem formulated with design
objectives of minimising thermal discomfort and maximising end-user rewards determines
control set-points for TCLs. Furthermore, a novel financial rewarding scheme for end-user
participation in DR is introduced. Bashash and Fathy (2013) have presented a bi-linear par-
tial differential equation model followed by a sliding mode controller for the real-time con-
sumption management of air conditioning loads using set-point control. Liu and Shi (2016a)
presents a centralised model predictive control (MPC) scheme for the aggregate control of
ON-OFF type air-conditioners to provide ancillary services in electricity markets. The opti-
mal control strategy for the aggregator is aligned with aggregate tracking of the regulation
reference signal while minimising the deviation of temperature from thermal set-point. More-
over, the overall implementation explicitly considers the compressor look-out effect and ON-
OFF time constraints for air-conditioners. Extending the scope to adopt higher-order thermal
models using a 2-D state bin model, an MPC strategy is introduced in Liu and Shi (2016b)
for TCLs to provide ancillary services. Mathieu, Koch, and Callaway (2013) develops a two-
stage approach—state estimation and real-time control—for the aggregate control of TCLs
for energy and frequency imbalance in power networks. In this scheme, state estimation is
adopted to measure load power and temperature in the absence of sensors. Furthermore, the
real-time control scheme is based on a look-ahead proportional controller that broadcasts con-
trol signals to participating TCLs while regulating temperature within the deadband. Zhang,
Lian, Chang, and Kalsi (2013) introduces a 2-D population flow strategy for modelling an
aggregate population of TCLs and thereafter, a centralised controller to assign set-points for
TCLs to follow an aggregate demand curve. The overall approach ensures thermal comfort
for participating users. In Hui, Ding, and Zheng (2019), an equivalent thermal model for an
inverter-type air-conditioner is developed. After that, a centralised control strategy based on
stochastic allocation method is developed for inverter-type air-conditioners to provide fre-
quency regulation services by changing the operating power. Mahdavi and Braslavsky (2020)
have proposed a centralised MPC framework based on a set-point control mechanism for
variable-speed air-conditioners for applications such as peak shaving and generation follow-
ing. The approach is compliant with current DR standards.

Despite the promising theoretical implementation, most of the aforementioned approaches
heavily rely on a centralised control framework where the central utility or the aggregator
assigns control set-points for all participating units. Consequently, the real-world implemen-
tation of such control schemes has significant drawbacks due to the dissemination of end-user
private information (Pillitteri & Brewer, 2014) and scalability issues under a large aggregation
of end-users (Molzahn et al., 2017; Scattolini, 2009).

An alternative to centralised control is to implement distributed control (Camponogara,
Jia, Krogh, & Talukdar, 2002) whereby a local controller manages each participating unit.
To date, several studies have investigated distributed control of household appliances for DR
and grid services. For instance, Larsen, van Foreest, and Scherpen (2013) present a fully
distributed approach for power balance among prosumers. This method allows prosumers to
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share information with their neighbours and implement a local control strategy based on dis-
tributed MPC and dual decomposition. Furthermore, the subgradient method is adopted to
turn on and off devices to reach the global balance. Nonetheless, considering practical im-
plementation, neighbour-to-neighbour communication is unrealisable due to privacy issues.
Papadaskalopoulos and Strbac (2013) introduces a decentralised scheme for the day-ahead
participation of DR in electricity markets. In this study, the decentralisation is achieved via
the Lagrangian Relaxation (LR) method such that the local problem corresponds to the mar-
ket participant’s price response whereas the global price update corresponds to the market
operator’s effort to reach an optimal clearing solution. In Chen, Wang, and Kishore (2014),
a two-layer direct load control scheme is proposed for DR applications. The aggregator is
present at the upper layer and individual energy management controllers are at the building
level. The decentralisation achieved via the average consensus algorithm ensures that ag-
gregate DR follows the desired demand. Halvgaard, Vandenberghe, Poulsen, Madsen, and
Jørgensen (2016) propose a distributed MPC scheme based on Douglas-Rachford splitting
for a large-scale power balancing market problem. In this scheme, each subproblem is solved
separately and the consensus is reached to achieve the desired global objective of the aggrega-
tor. Considering tracking and economic objectives for the aggregator, the distributed control
strategy’s performance and convergence properties are compared under different population
sizes. In Liu and Shi (2014), a distributed MPC strategy is proposed to control a population of
TCLs to provide regulation services with explicit consideration on minimum ON-OFF time
constraints for TCLs. Tindemans, Trovato, and Strbac (2015) present a decentralised approach
for stochastic control of a heterogeneous population of ON-OFF type TCLs where each TCL
is given an independent profile to track. Moreover, the method is tractable and ensures the
operation of TCLs within tight temperature bounds. In addition to that, the authors claim
that the proposed control strategy can be utilised for diverse DR applications and guaran-
tees a reliable response. Burger and Moura (2017) develop a distributed convex optimisation
approach based on the alternating direction method of multipliers (ADMM) for generation
following services in real-time markets. In this distributed control framework, each local con-
troller tries to minimise the temperature deviation from the set-point whereas the aggregator
tracks the desired power demand curve. In Mahdavi, Braslavsky, Seron, and West (2017),
a decentralised cluster-based MPC strategy is adopted to control TCLs and balance the solar
generation fluctuations. Furthermore, each cluster represents the aggregate load per substation
or the distribution transformer.

Despite centralised or distributed implementation, most of the aforementioned approaches
predominantly focus on achieving desired DR performance under perfect conditions, i.e., ac-
curate weather forecasts and perfect knowledge of model parameters at household-level. In
this regard, the effect of unavoidable uncertainties in a real-world setting is often neglected
in the overall implementation. Hence, there is no guarantee that such approaches will con-
tinue to deliver desired performance in the presence of inevitable uncertainties in a real-world
setting. Although the uncertainty associated with weather is modelled via a stochastic MPC
approach with affine disturbance feedback in Oldewurtel, Jones, Parisio, and Morari (2014),
restricting uncertainties to be i.i.d and follow a multivariate normal distribution is not always
accurate in a practical setting. A stochastic additive term to model uncertainties and a robust
MPC scheme is developed in Maasoumy, Razmara, Shahbakhti, and Vincentelli (2014); a re-
inforcement learning approach for controlling residential inverter-type air-conditioning while
accounting for model inconsistencies in Lork et al. (2020), theses control techniques are only
limited to DR applications at building-level, therefore, inapplicable for aggregate control of
residential DR for grid services. Conversely, Vrettos, Oldewurtel, and Andersson (2016) pro-
pose a hierarchical robust MPC framework for aggregation of commercial buildings to pro-
vide frequency regulation while addressing uncertainties due to secondary frequency signal
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variations. Nonetheless, this approach assumes outdoor temperature forecasts and model pa-
rameters to be perfect, which does not resemble a real-world setting where such uncertainties
are unavoidable. Erdinc et al. (2019) employs a stochastic scenario-based optimisation tech-
nique to account for uncertainties in outdoor temperature forecasts for day-ahead scheduling
of TCLs for DR. However, only 10 equiprobable randomly generated scenarios are consid-
ered for modelling the uncertain outdoor temperature forecasts. Moreover, there is no guar-
antee that the chosen set of scenarios is sufficient to model outdoor temperature variations
accurately. On the other hand, increasing the number of scenarios to accurately model uncer-
tainties is often achieved with increased computational burden of the overall control scheme
(Ben-Tal, El Ghaoui, & Nemirovski, 2009).

In the ADMM-based hierarchical control scheme presented in Diekerhof, Peterssen, and
Monti (2018), the uncertainty in thermal demand is modelled via a robust optimisation tech-
nique with the assumption that range forecasts of thermal demand are known. Afterwards,
uncertainty budgets (Bertsimas & Sim, 2004) are employed to obtain the optimal trade-off
between robustness and conservatism. However, setting the robustness parameter at the most
appropriate value is brute force and is always associated with a trade-off between the desired
performance and the robustness to uncertainties. Moreover, model uncertainties are neglected
in the formulation. To this end, it is understood that inevitable uncertainties often undermine
the overall performance of centralised and distributed control schemes for DR in a real-world
setting. This leads to DR aggregators receiving financial penalties from the market opera-
tor due to non-compliance (PJM, 2022). Therefore, developing DR control schemes resilient
against forecast and model parameter uncertainties is crucial for an aggregator to provide
desired performance in grid services.

On the other hand, current DR schemes for TCLs practised by the industry are open-loop
control approaches where identical control set-points, e.g., thermal set-points, power con-
sumption set-points, are broadcast to participating units during a DR event (Australian Re-
newable Energy Agency, 2019; Energex, 2022). In the absence of a feedback mechanism for
households to share information on internal states and operating points with the central util-
ity, these open-loop control approaches often lead to end-user thermal comfort violations. On
the other hand, each participating user sharing internal states and operating points with the
aggregator compromises end-user data privacy. Hence, it is vital to develop thermal comfort-
preserving control schemes for TCLs to provide DR while ensuring data privacy for partici-
pating users via a distributed implementation. Despite the increasing demand for inverter-type
(variable-speed) TCLs in the market (Hui et al., 2019), and the compatibility of inverter-type
air-conditioners with existing DR standards Department of Environment and Energy Australia
(2019), most of the existing control schemes are designed only for the operation of regular
ON-OFF type TCLs. A summary of the existing literature is given in Table 1.

The main contribution of this work is developing and validating an uncertainty-aware dis-
tributed control approach for residential inverter-type air conditioners to provide DR in grid
services whilst preserving end-user privacy and thermal comfort. Through the judicious im-
plementation of the LR method, the proposed approach reformulates the underlying control
problem into a hierarchical control framework comprising a coordinating controller at the cen-
tral utility-level and local controllers at each household-level to limit reliance of the central
controller on household specific information—ensuring end-user data privacy. Furthermore,
each household-level local controller adopts a robust MPC scheme that explicitly accounts
for household thermal parameter mismatches and outdoor temperature forecast errors. The
proposed approach is consistent with the operation of inverter-type air conditioners and is
validated using data from Australian Energy Market Operator.

The remainder of the paper is outlined as follows. Section 2 presents the individual model
and the aggregate model of the air conditioning system followed by the problem formulation.
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Table 1. A summary of existing control approaches for DR

Ref. Type of
control

Control
technique

Address
uncertainties?

End-user
privacy

preserved?

Type of
TCL

Bashash and Fathy (2013) centralised sliding mode
control × × ON-OFF

Liu and Shi (2016a) centralised MPC × × ON-OFF

Mathieu et al. (2013) centralised look-ahead
controller × ✓ ON-OFF

Zhang et al. (2013) centralised broadcast
control × ✓ ON-OFF

Mahdavi and Braslavsky (2020) centralised MPC × × variable-
speed

Larsen et al. (2013) distributed MPC+ dual
decomposition × partially N/A

Papadaskalopoulos and Strbac (2013) distributed LR method × ✓ N/A

Liu and Shi (2014) distributed distributed
MPC × ✓ ON-OFF

Tindemans et al. (2015) distributed stochastic
control × ✓ ON-OFF

Burger and Moura (2017) distributed ADMM
+ optimisation × ✓ ON-OFF

Mahdavi et al. (2017) distributed cluster-based
MPC × partially ON-OFF

Oldewurtel et al. (2014) centralised
(building-level)

stochastic MPC
+ affine disturbance

feedback

weather
predictions N/A N/A

Maasoumy et al. (2014) centralised
(building-level)

robust
MPC

model
uncertainties N/A N/A

Vrettos et al. (2016) centralised robust
MPC

secondary
frequency signal N/A N/A

Erdinc et al. (2019) centralised stochastic
optimisation

outdoor
temperature × ON-OFF

Diekerhof et al. (2018) distributed ADMM
+ robust MPC

thermal
demand ✓ N/A

proposed distributed LR
+ robust MPC

outdoor
temperature

+ model
parameters

✓
variable-

speed

N/A– not applicable

Section 3 describes the overall hierarchical control framework based on the LR method and
robust MPC. Section 4 discusses simulation results and finally, section 5 concludes the paper.

Notation Throughout this paper, the following notation is practised. Bold-face letters repre-
sent multi-dimensional arrays. Rn represents an n × 1 column vector of real numbers, Rn

+

represents an n× 1 column vector of positive real numbers, Rn×m represents a n×m matrix
of real numbers, In represents the n× n identity matrix, 1n represents an n× 1 column vec-
tor consisting of ones, Z[i,j] represents the set of integers from i to j. diag{x1, . . . , xn} is the
diagonal matrix formed by x1, . . . , xn as its diagonal elements, (·)T represents the transpose
of a matrix, ∥ · ∥∞ represents the infinity-norm and U(a, b) represents a continuous uniform
distribution described by parameters a and b.
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2. System Model and Problem description

2.1. Individual model

Unlike regular ON-OFF type air conditioners, inverter-type air conditioners can operate under
continuous levels by not limiting consumption to either zero or rated power (Hui et al., 2019;
Mahdavi & Braslavsky, 2020). Aligned with this, the discrete equivalent thermal parameter
(ETP) model (Katipamula & Lu, 2006) is adopted to model individual air conditioners. The
ETP model is thoroughly validated with experimental studies in Callaway (2009); Lu (2012);
Molina, Gabaldon, Fuentes, and Alvarez (2003). The state-space model of the i-th inverter-
type air conditioner can be expressed as follows:

xi(k + 1) = Aixi(k) +Bi ui(k) +Di vi(k) + wi(k) (1a)
yi(k) = xi(k) (1b)

where k is the sampling instant, the state xi(k) ∈ R+ represents indoor temperature Ti(k);
control input ui(k) ∈ R+ represents power consumption Pi(k) ∈ [ 0, P rated

i ], where P rated
i

is the rated power; exogenous input vi(k) ∈ R+ corresponds to outdoor temperature T out
i (k).

Assuming full-state feedback is available, the output yi(k) ∈ R+ corresponds to measured
indoor temperature. In addition to that, Ai = e−∆/RiCi , Bi = Ri ·

(
1− e−∆/RiCi

)
and

Di =
(
1− e−∆/RiCi

)
, where Ri is the thermal resistance (°C/kW), Ci is the thermal capac-

itance (kWh/°C) and ∆ is the step size (1/h). Moreover, wi(k) ∈ R in (1a) is the stochastic
additive disturbance which represents the uncertainties associated with the thermal model due
to mismatches in Ri, Ci and errors in the prediction of vi(k). A first-principle-based deriva-
tion of wi(k) taking account of nominal values of Ri, Ci and outdoor temperature forecast
errors is given in Appendix A.

2.2. Aggregate model

Consider a scenario where n households equipped with air conditioners have signed contracts
with a central utility to provide real-time DR by controlling the consumption of air condition-
ers. Assuming that individual systems are decoupled, the thermal dynamics of the aggregate
system can be represented as a dynamically decoupled system of individual subsystems de-
scribed by (1). This can be justified by the fact that households are geographically distributed.
Following this, the dynamics of the aggregate system can be modelled as:

x(k + 1) = Ax(k) +Bu(k) +Dv(k) +w(k) (2a)
y(k) = Cx(k) (2b)

where x(k)=
[
x1(k), x2(k), . . . , xn(k)

]T ∈ Rn
+ is the state vector,

u(k)=
[
u1(k), u2(k), . . . , un(k)

]T ∈ Rn
+ is the control input vector,

v(k)=
[
v1(k), v2(k), . . . , vn(k)

]T ∈ Rn is the exogenous input vector, and
y(k)=

[
y1(k), y2(k), . . . , yn(k)

]T ∈ Rn
+ is the output vector for all air conditioners at

kth sampling instant. Furthermore, w(k)=
[
w1(k), w2(k), . . . , wn(k)

]T ∈ Rn represents the
vector of uncertainties in each household. In addition to that, A, B, C, D ∈ Rn×n matrices
can be expressed as: A = diag{Ai}, B = diag{Bi}, D = diag{Di} for i = {1, . . . , n} and
C = In.
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2.3. Problem description

Let us consider a scenario where the central utility attempts to provide real-time DR for a
duration of T in response to a load reference signal Pref from the market operator. In this
regard, it is assumed that the bids offered by the aggregator in day-ahead wholesale markets
are accepted prior to the real-time operation during the DR event. Following this, the central
utility implements a robust MPC scheme to track Pref in real-time while taking account of
household-level uncertainties.

Considering the MPC prediction horizon to be N ∈ Z+, the state vector can be expressed
as:

x(k) =
[
xT(k|k), . . . ,xT(k +N |k)

]T ∈ Rn×(N+1) (3)

where the notation x(·)(k + j|k) refers to the prediction of x in (k + j)-th sampling instant
with the knowledge up to k-th sampling instant. Likewise,

u(k) =
[
uT(k|k), . . . ,uT(k +N − 1|k)

]T ∈ RnN (4)

v(k) =
[
vT(k|k), . . . ,vT(k +N − 1|k)

]T ∈ RnN (5)

w(k) =
[
wT(k|k), . . . ,wT(k +N − 1|k)

]T ∈ RnN (6)

y(k) =
[
yT(k|k), . . . ,yT(k +N − 1|k)

]T ∈ Rn×(N+1) (7)

Hence, the prediction dynamics of the aggregate system can be represented in the compact
form:

x(k) = Ax(k|k) +Bu(k) +D v(k) + Gw(k) (8a)
y(k) = E x(k) (8b)

where A ∈ Rn(N+1)×n, B ∈ Rn(N+1)×nN , D ∈ Rn(N+1)×nN , G ∈ Rn(N+1)×nN and
E ∈ Rn(N+1)×n(N+1) can be expressed as follows (Goulart, Kerrigan, & Maciejowski, 2006).

A =


In
A
A2

...
AN

 B =


B 0 · · · · · · · · ·
AB B 0 · · · · · ·
A2B AB B 0 · · ·

...
...

...
. . .

...

ANB AN−1B · · · · · · . . .



D =


D 0 · · · · · · · · ·
AD D 0 · · · · · ·
A2D AD D 0 · · ·

...
...

...
. . .

...

AND AN−1D · · · · · · . . .

 G =


In 0 · · · · · · · · ·
A In 0 · · · · · ·
A2 A In 0 · · ·
...

...
...

. . .
...

AN AN−1 · · · · · · . . .
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E =


In 0 · · · · · · · · ·
0 In 0 · · · · · ·
0 0 In 0 · · ·
...

...
...

. . .
...

0 0 · · · · · · . . .


In achieving desired tracking of the reference signal Pref via a real-time DR scheme, the

design goal of the central utility is to minimise the input energy of the system, in other words,
to minimise the consumption of air conditioners. This can be expressed as the stage cost of
the receding horizon control scheme given by:

ℓj
(
u(k + j|k)

)
= uT(k + j|k) · u(k + j|k) j ∈ Z[0,N−1] (9)

Consequently, the robust receding horizon control problem at the central utility can be for-
mulated as:

min
u(k+j)

max
w(k+j)

N−1∑
j=0

ℓj
(
u(k + j|k)

)
(10a)

subject to:

x(k) = Ax(k|k) +Bu(k) +D v(k) + Gw(k) (10b)
y(k) = E x(k) +F ξ(k) (10c)

y ≤ y(k + j|k) ≤ y, j ∈ Z[0,N−1] (10d)

0 ≤ u(k + j|k) ≤ u, j ∈ Z[0,N−1] (10e)

1Tn · u(k + j|k) = Pref(k + j), j ∈ Z[0,N−1] (10f)

w(k + j|k) ∈ W (10g)

The compact state-space model of the aggregate system introduced in section 2.3 is given by
(10b) and (10c); hard constraints on output are given by (10d), where y=

[
y
1
, . . . , y

n

]T ∈
Rn
+ is the vector consisting of lower thermal comfort limits and y=

[
y1, . . . , yn

]T ∈
Rn
+ is the vector of upper thermal comfort limits; constraints on input are (10e) where

u=
[
u1, . . . , un

]T ∈ Rn
+ represents the vector consisting of rated consumption of air condi-

tioners. Furthermore, (10f) corresponds to the power balance at each sampling instant, i.e., the
central utility tracking the system-operator specified load set-point at each sampling instant.
Moreover, (10g) represents the bounded uncertainty set W ∈ Rn to which the stochastic
additive uncertainty associated with the aggregate model belongs to.

However, the real-world implementation of the centralised DR approach described by (10)
has major drawbacks due to:

• compromise of data privacy (Pillitteri & Brewer, 2014) as end-customers are required
to share household sensitive information such as thermal parameters (Ri, Ci ∀i), tem-
perature comfort limits (y

i
, yi∀ i) with the central utility.

• under the full-state feedback implementation based on (10c), end-users are also re-
quired to share real-time or near real-time household indoor temperature measurements
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Market Operator

Coordinating controller

Central utility

Local controller
Robust MPC

uncertainty

Hierarchical 
demand management scheme

Local controller
Robust MPC

Local controller
Robust MPC

Figure 1. Block diagram of the proposed hierarchical DR scheme: local controllers at each household and the coordinating
controller at the central utility are derived from the LR method; each local controller employs robust MPC to account for
uncertainties in thermal parameters R,C and outdoor temperature v.

with the central utility.
• the centralised robust MPC formulation leads to a computationally intractable problem

with the aggregation of a large number of households (n) (Scokaert & Mayne, 1998).

Hence, a robust distributed DR scheme is highly deemed for the central utility to maximise
its social welfare in providing desired grid services.

3. Proposed methodology

The overall idea is to derive an equivalent distributed form of the centralised DR scheme (10)
such that the resulting hierarchical DR control implementation explicitly accounts for model
parameter uncertainties and outdoor temperature forecast errors while ensuring end-user data
privacy and thermal comfort. A summary of the proposed hierarchical DR scheme is given in
Figure 1.

Based on a high-level view, the proposed scheme can be described under three sections: a)
the application of the LR method to obtain a fully-automated hierarchical DR framework in
which household local controllers communicate with a coordinating controller at the central
utility ; b) implementing a robust MPC scheme at each local controller to attain design re-
quirements of the end-user while accounting for internal and external sources of uncertainties
at household level; c) establishing the coordination among local controllers via a coordinating
controller in order to achieve desired tracking of the load set-point signal.

3.1. Alternative formulation of the problem based on the LR Method

A careful look at the centralised robust MPC problem (10) reveals that the original problem
cannot be decomposed into a set of sub-problems due to the coupling of individual subsys-
tems via the power balance constraint (10f). However, in the absence of (10f), the stage cost
ℓj
(
x(k|k),u(k+ j|k)

)
of the original problem can be expressed as a sum of individual stage

costs given by:

ℓj
(
u(k + j|k)

)
=

n∑
i=1

ℓi,j
(
ui(k + j|k)

)
, j ∈ Z[0,N−1] (11)

9



where ℓi,j
(
xi(k + j|k), ui(k + j|k)

)
: R2 → R represents the stage cost of the sub-problem

at ith household for (k + j)th sampling instant.

Proposition 3.1. The stage cost in (11) is convex.

Proof. The stage cost ℓj
(
u(k + j|k)

)
is a quadratic function of u, hence the convexity is

preserved.

Since the stage cost ℓi,j
(
u(k + j|k)

)
is quadratic and convex with respect to u(k) and

the coupling of subsystems is only through a single complicating constraint, the LR method
(Conejo, Castillo, Minguez, & Garcia-Bertrand, 2006) is applied by relaxing the constraint
given by (10f).

Without loss of generality, let us consider the certainty equivalent problem of (10), in other
words, the centralised control problem with no uncertainties in the system.

If partial duality over the constraint (10f) of the original problem (10) is carried out, the
Lagrangian function (L) can be derived as:

L
(
ui(k + j|k), λ(k + j)

)
=

N−1∑
j=0

n∑
i=1

[
ℓi,j
(
ui(k + j|k)

)]
+

N−1∑
j=0

[
λ(k + j)

( n∑
i=1

ui(k + j|k)− Pref(k + j)

)]
(12)

where λ(k + j) ∈ R is the Lagrangian multiplier associated with the complicating input
constraint given by (10f) of the original problem at (k + j)th sampling instant.

Simplifying the expression for the Lagrangian function in (12) yields,

L
(
ui(k + j|k), λ(k + j)

)
=

n∑
i=1

[
N−1∑
j=0

ℓi,j
(
ui(k + j|k)

)
+ λ(k + j)ui(k + j|k)

]
−

N−1∑
j=0

[
λ(k + j) · Pref(k + j)

]
(13)

Evaluating the dual function ϕ(λ) for given values of Lagrangian multipliers λ(k + j) =

λ̂(k + j) for j ∈ Z[0,N−1] gives,

ϕ
(
λ̂(k + j)

)
=

min
ui(k+j)

n∑
i=1

[
N−1∑
j=0

ℓi,j
(
ui(k + j|k)

)
+ λ̂(k + j)ui(k + j|k)

]
−

N−1∑
j=0

λ̂(k + j)Pref(k + j)

subject to (10b) - (10e); j ∈ Z[0,N−1], i = 1, . . . , n. (14)

By dropping the constant term
∑N−1

j=0

[
λ̂(k + j) · Pref(k + j)

]
, the dual function in (14) can

be reduced to:

ψ
(
λ̂(k + j)

)
=

min
ui(k+j)

n∑
i=1

[
N−1∑
j=0

ℓi,j
(
ui(k + j|k)

)
+ λ̂(k + j)ui(k + j|k)

]
subject to (10b) - (10e); j ∈ Z[0,N−1], i = 1, . . . , n. (15)
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The reduced form of the dual function in (15) can be decomposed into a set of sub-problems
as follows:

min
ui(k+j)

N−1∑
j=0

ℓi,j(ui(k + j|k)) + λ̂(k + j)ui(k + j|k)

subject to: constraints for the i-th subsystem derived from (10b)- (10e);
j ∈ Z[0,N−1] (16)

A local agent responsible for each subsystem given by i ∈ {1, . . . , n} can solve problem (16)
independently and to evaluate the dual problem.

Lemma 3.2 (Lagrangian Bounding Principle). (Conejo et al., 2006) For any set of La-
grangian multipliers λ = {λ(k), . . . , λ(k + N − 1)} ∈ RN , the value of ϕ(λ) of the La-
grangian dual function is a lower bound of the optimal objective function value of the original
problem. □

Consequently, the Lagrangian dual problem gives the best lower bound of the optimal
objective function of the original problem. This can be mathematically expressed as:

ϕ∗ = maximise
λ

ϕ(λ) (17)

Lemma 3.3 (Strong duality). (Conejo et al., 2006) If the primal problem is convex, the op-
timal solution ϕ∗ of the Lagrangian dual problem coincides with the optimal solution to the
primal problem. □

Let optimal values of Lagrangian multipliers of the dual problem (17) be λ∗ =
{λ∗(k), . . . , λ∗(k+N−1)}; from strong duality, u∗i (k+j) for i ∈ {1, . . . , n} for j ∈ Z[0,N−1]

gives the optimal values of the primal problem.

Proposition 3.4. The dual function ϕ(λ) is concave.

Proof. The Lagrangian function L(u, λ) in (12) is affine in λ. Hence, the Lagrangian dual
function ϕ(λ) = infu L(u, λ) is concave because it is the pointwise infimum of a set of affine
functions.

From duality theory (Boyd & Vandenberghe, 2004), the dual function can be maximised
via an iterative steepest-ascent procedure. Following this, the sub-gradient method (Conejo et
al., 2006) is employed to update the Lagrangian multiplier at each iteration. Considering ν-th
iteration, the multiplier update is given by:

λ(ν+1)(k + j) = λ(ν)(k + j) +
1

a+ b ν
· s(ν)(k + j)

∥s(ν)(k + j)∥2
, j ∈ Z[0,N−1] (18)

where a, b are scalar constants which need to determined and s(ν)(k + j) is the sub-gradient
of the dual function in ν-th iteration at (k + j)-th sampling instant which is given by:

s(ν)(k + j) =

n∑
i=1

u
(ν)
i (k + j|k)− Pref(k + j), j ∈ Z[0,N−1] (19)
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In summary, the LR-based formulation suggests that control actions can be implemented hi-
erarchically with local controllers at each household implementing (16) and a coordinating
controller at the central utility implementing (18) and (19).

3.2. Local controller

Aligned with the LR-based formulation introduced in section 3.1, each household local con-
troller implements robust MPC (Bemporad & Morari, 1999) to manage the consumption of
the household air conditioner to provide real-time DR while accounting for household ther-
mal model mismatches and outdoor temperature forecast errors. The control problem for the
i-th local controller at (ν + 1)-th iteration can be expressed as:

min
u
(ν+1)
i (k+j)

max
wi(k+j)

N−1∑
j=0

[
ℓi,j
(
ui(k + j|k)

)
+ λ(ν)(k + j) · ui(k + j|k)

]
(20a)

subject to:

xi(k) = Ai xi(k|k) +Bi ui(k) +Di vi(k) + Giwi(k) (20b)
yi(k) = E i xi(k) (20c)

y
i
≤ yi(k + j|k) ≤ yi, j ∈ Z[0,N−1], ∀wi ∈ W i (20d)

0 ≤ ui(k + j|k) ≤ ui, j ∈ Z[0,N−1], ∀wi ∈ W i (20e)

wi(k + j|k) ∈ W i (20f)

where Ai, Bi, Di, Gi and E i are the matrices derived for the i-th subsystem based on the
compact form of the aggregate state-space model in (8).

Additionally, the quadratic stage cost ℓi,j for the i-th subsystem is derived from (9) and
expressed as:

ℓi,j
(
ui(k + j)

)
= u2i (k + j|k), j ∈ Z[0,N−1] (21)

The overall cost function in (20a) is derived from (16). The state and output are given by (20b)
and (20c) respectively. The constraints on outputs are given by (20d) and the constraints on
inputs are given by (20e). Furthermore, (20f) represents the set to which the uncertainty in
i-th subsystem belongs to. In addition to that, the box-constrained uncertainty set W i ⊂ R is
described by,

W i = {wi : ∥wi∥∞ ≤ w0} (22)

where w0 is the worst-case uncertainty associated with the thermal model of i-th house. The
procedure to estimate w0 based on the deviation of thermal parameters Ri, Ci from their nom-
inal values and the maximum forecast error of outdoor temperature is given in Appendix A.
In this manner, i-th local controller solves (20) at each iteration to determine the optimal
control sequence {ui(k), . . . , ui(k +N − 1)} while accounting for all possible uncertainties
described by wi(k + j).

12



3.3. Coordinating controller

In this hierarchical control architecture, the coordinating controller acts as the mediating agent
implemented at the central utility. While each local controller selfishly minimises input en-
ergy, the coordinating controller attempts to reach consensus, i.e., tracking the load set-point
reference signal, by updating the Lagrangian multiplier at each iteration. Aligned with the de-
composition based on the LR method described in section 3.1 and the MPC scheme described
in section 3.2, the multiplier update at the coordinating controller at (ν + 1)-th iteration at
(k + j)-th sampling instant can be expressed as:

λ(ν+1)(k + j) = λ(ν)(k + j) +
1

a+ b ν
· s(ν)(k + j)

∥s(ν)(k + j)∥2
, j ∈ Z[0,N−1] (23)

3.4. Convergence of the LR-based algorithm

Since the dual function is non-differentiable and concave as described in section 3.1, the max-
imum is found via a steepest-ascent procedure. Aligned with that, the sub-gradient method
is utilised to update the Lagrangian multiplier at each iteration. Therefore, the convergence
criteria is set to be:

∥λ(ν+1)(k + j)− λ(ν−1)(k + j)∥
∥λ(ν)(k + j)∥

≤ ϵ, j ∈ Z[0,N−1] (24)

where ϵ is the minimum tolerance for convergence which is a scalar. In other words, at a
particular sampling instant, the LR-based robust MPC scheme executes until the convergence
criteria in (24) is met. Thereafter, the execution of the algorithm at the next sampling begins.

In addition to a minimum accuracy criteria determined by (24), a maximum iteration cri-
teria, maxiter, is also utilised to accelerate the computation of the overall algorithm. In other
words, if the gradient is unable to reach the accuracy margin, the algorithm will terminate
after maxiter iterations at a certain sampling instant, without further optimising to reach con-
vergence.

The overall implementation of the real-time DR scheme is given in Algorithm 1. For in-
stance, at ν-th iteration of k-th sampling instant, each local controller solves (20) in parallel
with Lagrangian multipliers from the previous step to determine the optimal control sequence
u
(ν)
i (k + j) for j ∈ Z[0,N−1] and sends information to the coordinating controller. With in-

formation from all the local controllers, the coordinating controller updates the Lagrangian
multiplier for the (ν + 1)-th iteration as in (23) and scatters among all the local controllers.
With the updated Lagrangian multiplier, local controllers solve (20) back again to determine
the optimal control sequence for the next iteration. Likewise, this back-and-forth optimal de-
cision making and updating the Lagrangian multiplier processes repeat until the convergence
criteria in (24) is met. Let us assume that convergence criteria is met at ν∗-th iteration at k-
th sampling instant, then, each local controller assigns the first input of the optimal control
sequence at the final iteration, i.e., u(ν

∗)
i (k), as the power consumption set-point for its own

household air conditioner. After that, each local controller updates the state of the system
based on output indoor temperature measurements yi(k) to determine the optimal control se-
quence for the next step. Likewise, this algorithm is repeated at each sampling instant until
the DR event finishes.

It should be noted that a systematic coordination scheme between local controllers the
coordinating controller is required for the proposed scheme to deliver desired outcomes in a
realistic setting. In this regard, it is assumed that smart meter driven two-way communication
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infrastructure exists between local controllers at end-users and the coordinating controller at
the central utility. Moreover, the latency associated with the communication link is assumed
to be negligible with respect to the sampling period of 5-mins and the link possesses sufficient
network bandwidth for reliable data transfer. The smart metering interface at end customers
can be physically or virtually connected to the coordinating controller interface via a wired
link such as copper, optical fiber, or a wireless link such as microwave (Kabalci, 2016). In
addition to that, existing communication standards for DR such as OpenADR Alliance can be
incorporated to ensure a reliable, secure and smooth automation.

Remark 1. In the proposed hierarchical control scheme, each household only needs to share
information on R,C thermal parameters with the local controller in its own premises. Even
if the parameters shared by each customer are inaccurate, the robust MPC implementation at
the local controller effectively accounts for model parameter mismatches—only the nominal
range of thermal parameters are required—in determining optimal power consumption set-
points for household air conditioners. Moreover, compared to the central utility accessing
real-time indoor temperature measurements, each local controller having access to household
indoor temperatures under the full-state feedback implementation (20c) is often realistic under
the proposed hierarchical implementation. In addition to that, the power consumption set-
point assigned to an air conditioner at a certain sampling instant, let’s say k, which is u(ν

∗)
i (k),

is only known to the i-th local controller. By all means, it is guaranteed that end-user data
privacy is preserved under limited data requirements between the aggregator and the local
controller.

Remark 2. Unlike the centralised robust MPC implementation in (10), the hierarchical im-
plementation with household local controllers optimising their own design objectives sig-
nificantly reduces the computational burden of the coordinating controller. To elaborate this
further, consider a scenario where nh houses are under the central utility and an MPC scheme
with a prediction horizon of Npred is to be implemented to provide real-time demand manage-
ment services. For the centralised robust MPC scheme, the robust counterpart should be de-
termined based on uncertainty polytope having (2Npred)nh vertices (Scokaert & Mayne, 1998).
Conversely, under the proposed hierarchical control scheme, a local controller at each house-
hold only needs to determine the robust counterpart based on a polytope with 2Npred vertices
which is also independent of nh. Hence, it can be claimed that unlike the former approach
which is intractable, the latter is computationally attractive and therefore scalable.

Remark 3. Different from the existing open-loop control implementation where the popula-
tion of air-conditioners are assigned identical set-points irrespective of their operating states
(Energex, 2022), household local controllers in the proposed implementation effectively take
account of thermal comfort limits and while meeting end-user objectives. Furthermore, cost-
effective implementation of household local controllers can be achieved by embedding them
as an additional control feature in existing home energy management schemes (Energex,
2021).

4. Results

In order to validate the proposed control approach, it is considered that on a particular day,
the central utility receives a signal Pref from the market operator that should be tracked for a
duration of T = 2 hrs. The nominal outdoor temperature profile is obtained from School of
Earth and Environmental Sciences, The University of Queensland and the percentage error
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Algorithm 1: The overall control scheme based on the LR method and robust MPC
Input: T , Pref(k+ j), v(k+ j) for j ∈ Z[0,T −1], initial indoor temperature xi(k|k)∀ i

step-size ∆, prediction horizon N , and a, b for the sub-gradient method
1 initialise ϵ in (24), a and b in (23) ;
2 for τ = k: k + T − 1 do
3 set ν = 1;
4 Initialise λ(ν);
5 do
6 for i = 1 :n do
7 Local controller problem
8 solve subproblem for ith local controller (20);

9 send u
(ν)
i (τ + j) for j ∈ Z[0,N−1] to the coordinating controller;

10 end
11 Coordinating controller problem
12 update λ(ν+1)(τ + j) for j ∈ Z[0,N−1] (23);
13 set ν = ν + 1;

14 while ∥λ(ν+1)(k+j)−λ(ν−1)(k+j)∥
∥λ(ν)(k+j)∥ ≤ ϵ;

15 for i = 1 :n do
16 MPC update

17 apply the first control input: u(ν
∗)

i (τ) to the subsystem ;
18 measure yi(τ) and update xi(τ) ;
19 end
20 end

in forecasting outdoor temperature is obtained from Bureau of Meteorology (BoM), Aus-
tralia. To construct the reference signal, first, scheduled demand and generation data from the
Australian Energy Market Operator (AEMO) is obtained. Thereafter, a normalised reference
signal is generated by comparing generation and demand data. In the next step, the baseline
consumption for the control period is estimated for the scenario where all the air conditioners
operate at their set-point temperature. Thereafter, similar to (Liu & Shi, 2016a), the actual
reference signal is generated by assuming a regulation capacity of 15% from the baseline
consumption. For the heterogeneous population of air conditioners, Prated = U(2.5, 3.5) kW;
R = U(1.5, 2.5) °C/kW with its nominal value at 2.0°C/kW; C = U(1.5, 2.5) kWh/°C with
its nominal value at 2.0°kWh/°C and η = 2.5 are obtained from (Mathieu et al., 2013). The
thermal limits are y = 22°C and y = 24°C considering the operation of air-conditioners
aligned with Australian Institute of Refrigeration Air Conditioning and Heating (AIRAH)
guidelines Australian Institute of Refrigeration Air Conditioning and Heating (AIRAH). Prior
to the event, it is assumed that all the air conditioners operate at their preferred thermal set-
point which is 23°C. For the local controller implementation described by (20), the upper limit
of control input ( ui ∀ i) is obtained from Prated, the lower and upper limits of output (corre-
sponds to end-user thermal comfort limits) are y = 22°C and y = 24°C. Furthermore, Ai,
Bi, Di, Gi and E i for all i are derived from the aggregate state-space model described by (8).
The uncertainty associated with the thermal model (wi ∀ i) follows the derivation in Appendix
A. For the robust distributed MPC implementation, the sampling interval ∆ is considered to
be 5-mins to align with the operation of Australian Energy Market Operator (AEMO). The
prediction horizon of the overall MPC scheme is N = 15-mins. For the LR method, the pa-
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rameters of the multiplier update in (18) are a = 1 and b = 0.1 (Conejo et al., 2006). The
termination criteria ϵ = 0.01 and maxiter is chosen to be 50. The algorithms are written in
MATLAB with YALMIP toolbox (Löfberg, 2004) and Gurobi 8.0.1 (Gurobi Optimization,
2021) is used as the solver. The simulations are performed on a computing facility equipped
with Intel(R) Xeon(R) CPU E5-2680 v3 2.50GHz and 64 GB RAM.

4.1. Tracking performance

The performance of the control scheme is studied for different aggregation sizes n =
100, 250, 500 under the following scenarios:

• scenario A: certainty-equivalent scenario
• scenario B: wi ∼ U (−w0, w0) ∀ i with w0 = 0.10°C
• scenario C: wi ∼ U (−w0, w0) ∀ i with w0 = 0.15°C
• scenario D: wi ∼ U (−w0, w0) ∀ i with w0 = 0.20°C

To further explain this, scenario A corresponds to the case where perfect information on ther-
mal model parameters and outdoor temperature forecasts are available. On the other hand,
under scenario B, the worst-case additive disturbance (w0) for each air-conditioning subsys-
tem estimated as in Appendix A with the percentage forecast error of outdoor temperature
and thermal parameter mismatches is calculated to be 0.10°C. Subsequently, for simulation
purposes, the uncertainty associated with the thermal model for each house at each sampling
instant is obtained from a uniform distribution bounded by (−w0, w0).

Figure 2 illustrates the aggregate tracking performance and the variation of power con-
sumption and indoor temperature for n = 500 household air-conditioners while providing
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Figure 2. Scenario A: certainty-equivalent scenario for n = 500
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Figure 3. Scenario B: w0 = 0.10°C for n = 500

600

800

1000

1200

1400

P
o

w
er

 [
k

W
]

0

5

10

15

ab
s.

 e
rr

o
r 

[%
]

Tracking performance

0 15 30 45 60 75 90 105 120

Time step [min]

Reference Actual

0 15 30 45 60 75 90 105 120

Time step [min]

1

1.5

2

2.5

3

3.5

P
o

w
er

 [
k

W
]

Air-conditioner power consumption

0 15 30 45 60 75 90 105 120

Time step [min]

22

23

24

T
em

p
. 

[°
 C

]

Indoor temperature

Figure 4. Scenario C: w0 = 0.15°C for n = 500
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Figure 5. Scenario D: w0 = 0.20°C for n = 500

under scenario A. As can be seen from the figure, accurate load set-point tracking can be
achieved with a maximum absolute error of approximately 5% under the certainty-equivalent
scenario. Furthermore, the power consumption of air-conditioners follows an identical profile
in the range 2.0 ∼ 2.5 kW. A further inspection of the power consumption profile yields that
it is a scaled version of the aggregate profile. This can be understood by the equal allocation
of power set-points for air-conditioners under the LR method in the absence of uncertainties.
Since the initial indoor temperature is assumed to be 23°C, outdoor temperature profile is
identical, and R, C thermal parameters are assumed to be at their nominal values 2.0 °C/kW
and 2.0 kWh/°C for all air-conditioners under scenario A, the indoor temperature profile is
identical and remains within thermal comfort limits [22, 24]°C.

Moving on to the scenarios where uncertainties are present in the system, Figure 3 provides
information on the performance of the overall hierarchical control scheme under scenario B.
It can be seen that the proposed scheme is able to deliver precise load set-point tracking per-
formance with a maximum tracking error of < 5% under w0 = 0.10°C. Furthermore, it is
observed that the power consumption profile remains identical up to around 40-mins. There-
after, the power consumption significantly deviates from the identical equipartition profile for
most of the air-conditioners. Since most air-conditioners tend to hit their thermal limits after
45-mins, especially the lower thermal bound, the power consumption profile drifts from the
identical profile to avoid thermal comfort violations. This results in a wide range of power
consumption variation, 1.0 ∼ 2.5 kW, compared to scenario A. Nonetheless, the indoor tem-
perature is maintained within thermal comfort limits.

Figure 4 represents the aggregate tracking performance, the variation of power consump-
tion and indoor temperature for n = 500 household air-conditioners under scenario C. As can
be seen from the figure, when the degree of uncertainties is further increased to w0 = 0.15°C,
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the aggregate tracking error tends to go beyond 5% limit towards the end of the DR event.
Moreover, compared to scenario B, the air-conditioners maintain an identical profile only up
to 15-mins and drifts from the nominal profile as indoor temperature tends to reach comfort
limits. This concludes that the rate at which indoor temperature tends to hit thermal limits
increases with the degree of uncertainty associated with the overall system. Consequently,
the range of operation of air-conditioners further expands to 1.0 ∼ 3.5 kW compared to sce-
nario B. However, indoor temperature is maintained within [22, 24]°C even in the presence of
worst-case uncertainties at w0 = 0.15°C.

When the degree of uncertainties is further increased to w0 = 0.20°C under scenario D
as shown in Figure 5, the tracking performance degrades and results in approximately 20%
tracking error towards the end of the DR event. Furthermore, equipartition allocation is only
observed for about 10-mins and thereupon, the power consumption profile significantly varies
from the nominal profile. For certain durations, (60-90 mins), some air-conditioners operate at
their rated consumption to mitigate temperature comfort violations. Consequently, the power
consumption varies in a much wider range (0 ∼ 4 kW) compared to other scenarios. Not only
that, unlike the other scenarios where indoor temperature tries to reach the lower bound which
is 22°C, under scenario D, it is observed that for some air-conditioners indoor temperature
reaches the lower thermal limit whereas for other air-conditioners, the indoor temperature
tends to reach the upper thermal limit which is 24°C. However, even with w0 = 0.20°C, the
proposed hierarchical control scheme is able to maintain thermal comfort for end-users at the
expense of reduced tracking performance.

4.2. Scalability of the approach

The computational performance of the hierarchical DR scheme under uncertainties is com-
pared against its counterpart–certainty equivalent scenario. A summary of the results in terms
of total computation time (in minutes) for different aggregation sizes with and without uncer-
tainties are given in Table 2.

Table 2. Comparison of the total execution time under different scenarios

Aggregation size
(n)

Total execution time under
the certainty-equivalent

scenario (min)

Total execution time in the presence of
uncertainties (min)

w0 = 0.10°C w0 = 0.15°C w0 = 0.20°C w0 = 0.25°C

100 26.85 26.02 26.74 20.71 inf.
250 60.66 61.17 57.28 59.95 inf.
500 108.0 112.2 107.1 110.5 inf.

— simulations are carried out on a computing facility equipped with Intel(R) Xeon(R) CPU E5-2680 v3 2.50GHz and 64
GB RAM memory.
— the local controller algorithm (20) is executed in parallel.

It can be seen from the data in Table 2 that the proposed robust control scheme is able to
deliver DR within the allocated time, i.e., T = 2 − hrs = 120 − mins, for all the scenarios
in the presence of uncertainties under an aggregation size of n = 500. Hence, it can be
claimed that the proposed hierarchical DR scheme is computationally scalable compared to
the centralised robust implementation in 10. Furthermore, the robust MPC implementation at
household local controllers is able to achieve the same level of computational performance as
a perfect controller which represents the certainty-equivalent scenario.

A further inspection of the results in Table 2 suggests that the proposed approach leads to
an infeasible problem if the worst-case uncertainty (w0) associated with each subsystem is
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Figure 6. The convergence of λ at different time steps under w0 = 0.10°C for n = 500

0.25°C. To put it differently, the local controller fails to find an optimal solution to problem
(20) for w0 = 0.25°C without violating constraints on thermal comfort defined by (20d). This
is intuitive as the control law for open-loop robust MPC is inapplicable due to infeasibility
when unknown disturbances affect the process (Scokaert & Mayne, 1998). Nevertheless, a
performance bound for the overall DR scheme under uncertainties can be obtained based on
estimated worst-case uncertainties (w0) by adopting the proposed method.

4.3. Convergence of the LR scheme

The convergence behaviour of the Lagrangian multiplier (λ) and the subgradient (s) in section
3.4 for different time steps (k = 0, 1, 12, 23) under n = 500 with w0 = 0.10°C is shown
in Figure 6 and Figure 7 respectively. Looking at plots, it is apparent that the Lagrangian
multiplier (λ) and the sub-gradient (s) exhibit oscillatory convergence as expected in the
subgradient method (Conejo et al., 2006). As can be seen from Figure 6, λ is initialised at 0
for the first iteration at k = 0. Thereupon, after reaching maxiter iterations as discussed in
section 3.4, a ’warm-start’ approach is adopted. To explain this, the value of λ for the 50th

iteration at k = 0 is set to be the value of λ for the first iteration at k = 1. This ’warm-start’
technique is utilised to speed up the convergence of the overall algorithm at a certain time
step. Moreover, this will result in low oscillations in λ in succeeding time steps as observed
in Figure 6. Similarly, the subgradient varies significantly at the first iteration of k = 0 when
λ is initialised at 0. Afterwards, s tends to converge in an oscillatory manner in the range ±40
kW until maxiter criteria is met.

It is worth mentioning that the tracking performance depends on maxiter convergence crite-
ria. The tracking performance can be further improved especially under scenario A if maxiter
is set at a value greater than 50. However, this will increase the computational time of the
overall algorithm. To summarise, the proposed hierarchical control scheme converges within
an acceptable range with the adoption of double termination criteria.
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5. Conclusions and future work

This paper develops a robust hierarchical control scheme for residential TCLs to provide DR
in grid services. First, a centralised formulation of the control problem at the central util-
ity is considered. Afterwards, an equivalent decomposable structure with a local controller
at each household and a coordinating controller at the central utility is derived by relaxing
the power balance constraint via the LR method. To enhance the resiliency of the proposed
DR scheme against uncertainties in a real-world setting, a robust MPC implementation is
adopted at household local controllers that account for model parameter mismatches and out-
door temperature forecast errors. Furthermore, data privacy of end-users is preserved as they
are only required to share household-specific information with the local controllers in their
own premises. Using inverter-type air-conditioners as the controllable load, the simulation
studies are validated on a real reference signal obtained from the Australian Energy Market
Operator. Some of the key findings of the study are:

• As the degree of uncertainty increases, the DR tracking performance degrades. Never-
theless, the proposed robust hierarchical control scheme is able to provide desired DR
with an upper bound of error at ∼ 20% under w0 = 0.20°C degree of uncertainties
while regulating indoor temperature within [22, 24]°C.

• Beyond w0 = 0.20°C, the robust implementation is infeasible as the local controllers
fail to find an optimal solution without violating thermal comfort limits for end-users.
Hence, the proposed approach can be utilised to determine a performance bound of
uncertainties in a realistic setting.

• The same level of computational performance of a perfect controller, i.e., a control
implementation without any uncertainties in the system, can be achieved by the pro-
posed hierarchical robust MPC scheme with the adoption of double termination criteria.
Hence, the overall approach is scalable.

In future work, it would be interesting to assess the effect of latency and imperfections
in the communication infrastructure on the performance of the proposed hierarchical DR
scheme.
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Appendix A. Derivation of the worst-case uncertainty limits

Consider the thermal model of the ith air conditioning subsystem (without explicitly consid-
ering uncertainties as a stochastic disturbance),

xi(k + 1) = Aixi(k) +Bi ui(k) +Di vi(k) (A1)

where the notation follows the same as in (1a).
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Let Ri and Ci information be imperfect, then their actual values can be expressed as:

Ri = R̃i +∆Ri

Ci = C̃i +∆Ci

where R̃i and C̃i are the nominal values of Ri and Ci parameters, ∆Ri and ∆Ci are the
deviations of Ri and Ci from their nominal values respectively. Hence, Ai term in (1a) can be
expressed as:

Ai = exp

(
−h

(R̃i +∆Ri) · (C̃i +∆Ci)

)
(A2)

Ai = exp

(
−h

(R̃i · C̃i + R̃i ·∆Ci +∆Ci · R̃i +∆Ri) ·∆Ri

)
(A3)

Using Taylor series expansion to linearise (A3), the value of Ai can be approximated by,

Ai = Ãi +∆Ai (A4)

where Ãi = e−h/(R̃i·C̃i) is the nominal value of Ai and ∆Ai is the deviation from the nominal
value of Ai due to model parameter mismatches.

Similarly, Bi and Di can be represented as,

Bi = B̃i +∆Bi (A5)

Di = D̃i +∆Di (A6)

Let the nominal forecast of outdoor temperature at time k be ṽi(k) and the error in predicting
outdoor temperature be ∆vi(k). Thereafter, substituting (A4), (A5) and (A6), and the actual
value of v(k) in (A1) yields,

xi(k+1) =
(
Ãi +∆Ai

)
· xi(k) +

(
B̃i +∆Bi

)
· ui(k) +

(
D̃i +∆Di

)
·
(
ṽi(k) +∆vi(k)

)
(A7)

Separating the certain terms and representing the uncertain terms with an additive stochastic
term (wi) can derived as:

wi(k) = ∆Ai · xi(k) + ∆Bi · ui(k) + ∆Di · ṽi(k) + ∆Di ·∆vi(k) (A8)

Hence (A7) can be rewritten as,

xi(k + 1) = Ãi · xi(k) + B̃i · ui(k) + D̃i · ṽi(k) + wi(k) (A9)

For brevity and ease of notation, (̃·) notation is dropped and (A9) is re-written as,

xi(k + 1) = Ai · xi(k) +Bi · ui(k) +Di · vi(k) + wi(k) (A10)
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