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Abstract—This paper presents a model-based approach for the
collective control of residential air-conditioning loads to deliver
robust and optimal demand management. The proposed ap-
proach performs an optimal trade-off between accurate tracking
of system operator specified load-set points and minimisation of
consumer discomfort, while ensuring robustness to parametric
uncertainties and fluctuations in outdoor temperature. Benefiting
from robustness to uncertainties, the proposed approach is reliant
on minimal household specific information. The mathematical
model of the population of residential air-conditioning loads
is obtained through the aggregation of individual household
specific thermal models. This is followed by the development of a
robust model predictive control approach for aggregate demand
management to deliver optimum regulation services to account
for uncertainties in model mismatch and the prediction errors
associated with outdoor temperature. The approach is consistent
with the existing demand response standards and is validated
using a reference signal from PJM.

The results demonstrate that the developed control scheme is
capable of precisely following the system-operator specified load
set-points even under the worst-case uncertainties of thermal
parameters. While achieving the target set-point, it is further
observed that customer comfort is always preserved along with
minimum compressor control action on air conditioners.

Index Terms—Ancillary services, uncertainties, robust model
predictive control, aggregator, inverter-type air conditioners,
demand response.

I. INTRODUCTION

The rapid growth of renewable generation in the past decade
has given rise to a highly demanding need for ancillary
services. Although the provisions of ancillary services were
limited to power-plants and large-scale facilities in the prelim-
inary stages, the recent developments of the infrastructure at
the consumer-end has paved the path to satisfactory utilisation
of controllable loads in system related applications [1].

Due to the presence of high thermal inertia, Heating ven-
tilation and Air Conditioning (HVAC) is considered to be an
ideal candidate for demand-side control applications [2]. Based
on the state-of-the-art, the demand response approaches for
HVAC can be broadly categorised under rule-based control,
optimisation-based control and advanced model-based control.
In rule-based approaches [3], [4], heuristic algorithms are
introduced to rank air conditioners based on their operating
temperature for dispatch during a frequency regulation event.
In optimisation-based approaches, an off-line optimisation
problem is formulated based on multiple control objectives
to determine the scheduling sequence of HVAC for optimal

bidding in markets [5]. On the other hand, advanced model-
based approaches utilise Model Predictive Control (MPC),
where an on-line optimisation problem is solved at each time
step to follow a reference signal or to minimise the energy
consumption of HVAC.

Considering the literature on MPC in HVAC control ap-
plications, the authors in [6], [7] have implemented control
strategies for maximising the energy efficiency in buildings
whereas [5], [8], [9] develop control schemes for ancillary
service provisions from individual houses and office buildings.
A stochastic MPC scheme is proposed in [6] to meet the
uncertainties in weather prediction and occupancy of indi-
vidual buildings in order to minimise energy consumption.
Vrettos et.al in [5] have proposed a robust MPC scheme to
account for uncertainties in reserve capacity in commercial
buildings providing frequency regulation services. Although
some of the uncertainties are addressed to a certain extent in
the aforementioned work, the uncertainties associated thermal
model parameters are rarely discussed in the existing literature.
For example, the authors in [8]–[10] have developed control
schemes based on perfect models and further assumes that
thermal parameters are perfectly known at the central dispatch
utility. However, when a large population of residential units
participate in such events, determining thermal parameters of
each individual model is cumbersome. On the other hand,
imperfect estimation of such parameters can lead to deviations
from expected provision of demand in ancillary service events
[11]. Hence, it is vital to develop a control scheme which
is robust for parametric uncertainties in order for successful
provision of ancillary services through demand management.

Beside uncertainties, it is important to develop control
algorithms which are compliant with existing demand response
standards. For example in Australia, inverter-type conditioners
are only allowed to operate under pre-determined consump-
tion levels identified as ‘Demand Response Modes’ (DRMs)
[12] during a demand response event. Nevertheless the set-
point control in [9], [13] and the fractional ON-OFF control
approach in [14] are only applicable for regular ON-OFF
type air conditioners, but not for inverter-type air conditioners
operating under DRM standards. Hence, developing control
algorithms complying with existing standards is equally im-
portant for practical implementation.

The specific contributions of this work are as follows:
• Developing a robust model predictive control approach



for inverter-type air conditioners operating under demand
response modes to deliver ancillary services while ensur-
ing robustness to uncertainties with minimal reliance on
household specific information.

• Evaluating the effect of parametric uncertainties and
outdoor temperature fluctuations at each household by
means of a stochastic additive representation in individ-
ual thermal models and exploiting individual household
models to develop the aggregate control scheme.

The rest of the paper is organised as follows. Section II
describes the overall model of the system. Section III explains
the robust MPC formulation for the provision of ancillary ser-
vices. Section IV illustrates the performance of the developed
control scheme under different scenarios and finally section V
concludes the paper.

II. SYSTEM MODEL

Since individual air conditioners do not meet the minimum
capacity requirements to participate in electricity markets, a
third-party utility or an aggregator accumulates the response
from each air conditioner and participates in markets on behalf
of them. The overall system model is presented in Fig. 1.
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Fig. 1. Overall system model

A. Individual model
A discretised form of the Equivalent Thermal Parameter

(ETP) model [14] is considered for each inverter air condi-
tioner. Considering the cooling mode, the thermal model can
be expressed as,

Ti(k + 1) = aiTi(k) + (1− ai)
[
T out
i (k)− ηiRiPi(k)

]
(1)

where i is the air conditioner index, Ti(k) is the indoor temper-
ature at time step k, T out

i (k) is the outdoor temperature, the
parameter ai = e−h/RiCi , where Ri is the thermal resistance,
Ci is the thermal capacitance and h is the simulation step. In
addition to that, Pi(k) is the power consumption at time step
k and ηi is the coefficient of performance. Unlike a regular
ON-OFF type air conditioner where Pi(k) ∈ (P min

i , P rated
i ),

an inverter-type air conditioner can operate at any power
consumption level between P min

i and P rated
i where P min

i is
the minimum possible power consumption and P rated

i is the
rated power of the ith air conditioner. Table I shows typical
thermal parameters for air conditioners. However, if Ri and Ci

information is imperfect, their uncertainties can be represented
by,

Ri = Rnom,i +∆Ri

Ci = Cnom,i +∆Ci

TABLE I
THERMAL PARAMETERS FOR AIR CONDITIONERS [14]

Parameter Value

R 1.5 -2.5°C/kW
C 1.5 -2.5 kWh/°C
η 2.5

where Rnom,i and Cnom,i are the nominal values of Ri and Ci

parameters, ∆Ri and ∆Ci represent the deviation from their
nominal values. Hence the term ai in (1) can be stated as,

ai = e−h/(RiCi) = e−h/(Rnom,i+∆Ri)(Cnom,i+∆Ci)

= e−h/(Rnom,iCnom,i+Rnom,i∆Ci+Cnom,i∆Ri+∆Ri∆Ci) (2)

After assigning nominal values and possible deviations for Ri

and Ci, (2) simplifies to,

ai = anom,i +∆ai (3)

where anom,i = e−h/(Rnom,iCnom,i) is the nominal value of ai
and ∆ai is the deviation from the nominal value of ai due to
parametric uncertainties in the thermal model.

Let the error in predicting outdoor temperature at time k be
∆T out

i (k), then substituting (3) in (1) yields,

Ti(k + 1) =
(
anom,i +∆ai

)
Ti(k) +

(
1− (anom,i +∆ai)

)[(
T out
i (k) + ∆T out

i (k)
)
− ηi(Rnom,i +∆Ri)Pi(k)

]
(4)

Separating the certain terms and representing the uncertain
terms with an additive stochastic term (wi) leads to,

wi(k) = (1− anom,i)
(
∆T out

i (k)− ηi ∆Ri Pi(k)
)
−∆ai·(

T out
i (k)−∆T out

i (k)− ηi(Rnom,i +∆Ri)Pi(k)

)
(5)

Hence (4) can be modified as,

Ti(k + 1) = anom,iTi(k) + (1− anom,i)[
T out
i (k)− ηiRnom,iPi(k)

]
+ wi(k) (6)

For brevity and ease of notation, ‘nom’ term is dropped and
(6) is re-written as,

Ti(k + 1) = aiTi(k) + (1− ai)[
T out
i (k)− ηiRiPi(k)

]
+ wi(k) (7)

Based on the derived thermal model in (7) , the state-space
model for the ith air conditioner can be expressed as,

xi(k + 1) = Aixi(k) +Biui(k) +Divi(k) + wi(k) (8)
yi(k) = xi(k) (9)

where xi(k), ui(k), vi(k) and yi(k) represent
the indoor temperature, power consumption,
outdoor temperature and output at time step k
respectively. Additionally, Ai = e−h/Rnom,iCnom,i ,
Bi = −(1 − e−h/Rnom,iCnom,i)Rnom,i ηi P

rated
i and

Di = 1 − e−h/Rnom,iCnom,i . The term wi(k) accounts
for the combined uncertainties in thermal parameters and
outdoor temperature prediction.



B. Aggregate model
Let us consider a population of nh houses under an aggre-

gator. Hence, the state-space model of the aggregate system
can be obtained by stacking the individual models described
in section II-A and can be expressed as,

x(k + 1) = Ax(k) +Bu(k) +Dv(k) +w(k) (10)
y(k) = Cx(k) (11)

where x(k)=
[
x1(k), x2(k) . . . , xnh

(k)
]T

, u(k)=
[
u1(k),

u2(k), . . . , unh
(k)

]T
, v(k)=

[
v1(k), v2(k) . . . , vnh

(k)
]T

and w(k)=
[
w1(k), w2(k) . . . , wnh

(k)
]T

where x(k),
u(k), v(k) and w(k) ∈ Rnh . In addition to that,
A=diag{A1, A2, . . . , Anh

}, B=diag{B1, B2, . . . , Bnh
},

C=Inh
and D=diag{D1, D2, . . . , Dnh

} such that A, B, C
and D ∈ Rnh×nh and Inh

is the nh × nh identity matrix.

III. PROPOSED METHODOLOGY

Assuming the bids offered by the aggregator are accepted
in day-ahead markets, the system operator sends a reference
signal to the aggregator during an ancillary service event.
After receiving the reference signal, the aggregator determines
control actions on the population of air conditioners based
on the robust MPC scheme implemented in this paper while
taking account of household model parameter uncertainties
and outdoor temperature prediction errors. The overall control
scheme is depicted in Fig. 2.

Outputs ( )

Aggregate system: (  houses)

Control inputs ( )

Robust MPC controller

Uncertain Outdoor 
temperature

Uncertain
Thermal parameters

(  and )

Reference  
signal

Fig. 2. The robust MPC implementation in the presence of parameter
uncertainties and outdoor temperature prediction errors

A. Robust Model Predictive Control scheme
The control decisions on the population of air conditioners

are based on a robust MPC scheme [15] implemented at
the aggregator level. In this approach an on-line optimisation
problem is solved at each step to determine the optimal control
sequence for a certain prediction horizon under the worst-case
uncertainties. Then only the first control input of the sequence
is applied to the system and the procedure is repeated at the
next step. Hence, at every sampling instant k, the control
objective is to solve the following finite horizon robust optimal
control problem:

min
u

max
w

N−1∑
j=0

wP ∥(Pagg(k + j|k)− Pref(k + j))∥1

+ wx ∥(x(k + j|k)− xset)∥1 + w∆u ∥∆u(k + j|k)∥1 (12)

subject to:

x(k + j + 1|k) = Ax(k + j|k) +Bu(k + j|k)
+Dv(k + j|k) +w(k + j|k)

(13)

Pagg(k + j|k) = Prated
Tu(k + j|k) (14)

X ≤ x(k + j|k) ≤ X (15)
∆u(k + j|k) = u(k + j + 1|k)− u(k + j|k) (16)

u(k + j|k) = {0.5, 0.75, 1.0} (17)
w(k + j|k) ∈ W (18)

for j = 0, 1, 2 . . . N − 1

where N is the prediction horizon, u = u(k|k), . . . ,
u(k +N − 1|k), w = w(k|k), . . . ,w(k +N − 1|k), Pagg(k)
refers to the aggregate power of air conditioners at time step
k, Pref(k) is the reference signal at time step k, xset ∈ Rnh

is the indoor temperature set-point, ∆u(k) is the change in
input computed at time step k, Prated ∈ Rnh is the vector
of rated power of air conditioners, X , X ∈ Rnh are the
sets corresponding to the lower and upper bounds of indoor
temperature for air conditioners. wP , wx, w∆u ∈ R are the
penalty weights assigned for each of the objectives in the cost
function. Please note that (k+ j|k) refers to the prediction at
time k + j based on the knowledge at time step k.

Minimising the cost function based on worst-case distur-
bance is given in (12). The first term in (12) corresponds to
the error in tracking the reference signal sent by the system
operator and the second term represents the error in tracking
the set-point temperature. The final term expresses the change
in control effort in achieving the other two objectives discussed
above. The control effort is indirectly related to the life-time of
the compressor of an air conditioner. It is important to mention
that L-1 norm (∥.∥1) is considered for each objective to
minimise the complexity of the resulting optimisation problem
when a large population of air conditioners is considered
in the aggregate model. The state update equation of the
aggregate model is given in (13). The aggregated power of
air conditioners is defined in (14). The constraints on state
(indoor temperature) are given in (15). The change in control
input is defined in (16). The constraint in (17) corresponds
to the discrete power consumption levels (based on rated
power) at which air conditioners can operate during an event
and implies that the control algorithm is compliant with the
existing demand response standards. Finally, (18) refers to the
constraints on the stochastic additive uncertainty. The worst-
case uncertainty set W is defined as,

W = {w : ∥w∥∞ ≤ w0} (19)

where w0 is the worst case uncertainty associated with each
household thermal model. Based on (5), an estimate of w0 can
be obtained by setting ∆Ri = |∆Ri|max, ∆Ci = |∆Ci|max

and ∆T out
i (k) = |∆T out

i |max for all i = 1, . . . , nh.

B. Construction of the reference signal

In markets like PJM, the reference signal is usually given
in the form of a normalised signal [16]. Hence, the signal



should be reconstructed depending on the population in the
study. Following the approach introduced in [4], the reference
signal can be expressed as,

Pref(k) = Pbaseline(k) +B · Pnorm(k)

where, Pbaseline(k) is the baseline consumption of the pop-
ulation at time step k, B is the reserve capacity offered and
accepted in markets and Pnorm(k) ∈ {−1, 1} is the normalised
reference signal at time step k. The baseline consumption of
the population of air conditioners can be found by averaging
the consumption over a certain period of time. The power
consumption of an individual air conditioner when operating
at the set-point at time k can be found by determining Pi(k)
after setting Ti(k + 1) = Ti(k) = Tset, where Tset is the set-
point temperature, in (1). Hence, the baseline consumption
for a duration of time T can be approximated as, Pbaseline =
1
T

∑T
k=1

∑nh

i=1 Pi(k).

IV. RESULTS

On a hot summer day in February, 03-02-2020, the sys-
tem operator requests the aggregator to provide for ancillary
services from 15:00 - 16:00. As discussed in section III-B,
bids offered by the aggregator are accepted and the reserve
capacity B is assumed to be 20% of Pbaseline. The reference
signal, Pref , is obtained from PJM markets [16] and further
considered that the aggregator has perfect information of the
signal prior to the event. The outdoor temperature is obtained
from [17]. The nominal parameters Rnom = 2 °C/kW and
Cnom = 2 kWh/°C. In addition to that |∆R|max = 0.5 °C/kW
and |∆C|max = 0.5 kWh/°C as in [14]. Pi,rated = 2.5 kW for
all i = 1, . . . , nh. Further, X = {22, 22, . . . , 22}T and X =
{24, 24, . . . , 24}T. Additionally, xset = {23, 23, . . . , 23}T and
all the air conditioners operate at their set-point before the
event, i.e. x(0) = xset.

The simulation time step h is chosen to be 1 min to
match with the sampling time of the PJM reference signal.
Consequently, the proposed control scheme is not susceptible
to the effect of delays that are generally in the order of seconds
[18]. Moreover, it is found that N= 3 delivers the best trade-off
between computational tractability and perfect tracking per-
formance. Although longer horizons lead to better outcomes
in terms of performance, comparatively a short horizon is
chosen to avoid a highly computationally demanding problem
and to preserve the consistency with likely available forecasts
of outdoor temperature and regulation signal. The penalty
weights are wP = 10, wx = 1 and w∆u = 1. Furthermore,
robust MPC scheme is developed in MATLAB with YALMIP
toolbox [19] and Gurobi 9.0.2 solver in a computing facility
with 128 GB memory and 16 CPUs.

It is worth noting that the proposed implementation in
section III leads to deploying control actions on the entire
population and further requiring indoor temperature measure-
ments from all units. This could be justified by the availability
of real-time data as in [20] and local control using demand
response enabling devices (DREDs) [12]. Following this, for

a population of nh = 1000, simulations are carried out for two
scenarios: nominal case and under worst-case uncertainties.

A. Nominal system

In this scenario, it is assumed that perfect prediction of
T out is available and thermal parameters take their nominal
values, i.e. Ri = Rnom,i = 2 °C/kW and Ci = Cnom,i = 2
kWh/°C for all i = 1, . . . , nh. As can be seen from Fig. 3(a)
that with perfect knowledge on Ri and Ci parameters for all
i and perfect outdoor temperature estimates, the developed
control scheme is able to perfectly track the reference within
a very narrow-band of deviation from temperature set-point.
In addition to that, the majority of the air conditioners operate
at 0.75·Prated at each time step and avoid operating at either
the lowest or highest possible level.

B. System under uncertainties

Considering the worst-case parametric uncertainties for all
i, i.e., ∆Ri = |∆R|max = 0.5 °C/kW and ∆Ci = |∆C|max =
0.5 kWh/°C and outdoor temperature fluctuation, two worst-
case uncertainty levels are determined for wi(k) in (5) such
that: w0 = 0.050 °C and w0 = 0.075 °C. Further, wi(k) is
assumed to be normally distributed between (−w0,w0).

Looking at Fig. 3(b), it is apparent that accurate tracking
can be achieved even under w0 = 0.050 °C. However, the
corresponding indoor temperature for air conditioners tend
to diverge more from their nominal set-point. On the other
hand, when the population of air conditioners experience an
uncertainty level of w0 = 0.075 °C as in Fig. 3(c), it is
interesting that the aggregate consumption is still capable of
accurately tracking the reference signal but with more disper-
sion of indoor temperature around the set-point compared to
the case in Fig. 3(b). Further analysis on the corresponding
control effort plots suggest that as the degree of uncertainty
increases, more and more units tend to operate at either 50%
of Prated or Prated compared to 75% of Prated. Although this
gives an intuition that air conditioners should operate at their
extreme limits to mitigate thermal constraint violations, Fig.
3 in general does not provide a clear insight into the impact
of uncertainties on the tracking performance.

The robustness of the tracking performance can be under-
stood by thermal parameter heterogeneity of the aggregate
population. When few air conditioners operate at their extreme
limits to keep the indoor temperature within thermal limits, the
compensation is provided by most of the other air conditioners
who possess high thermal inertia. Hence, accurate tracking
is achieved without any violation of temperature constraints.
Comparatively, the effect of uncertainty on a homogeneous
population of nh = 100 air conditioners with R = 2 °C/kW,
C = 2 kWh/°C and Prated =2.5 kW is clearly depicted in Fig.
4.

As shown in Fig. 4, when the temperature constraints are
further tightened to [22.5, 23.5]°C under w0 = 0.02°C and
allowing wi(k) to be uniformly distributed between (0,w0),
the control scheme fails to provide desired regulation while
maintaining indoor temperature within thermal limits. Thus,
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Fig. 3. The performance of the developed control scheme in tracking the reference, tracking the temperature set-point and the percentage control action at
each time step for three different scenarios (simulation time: scenario (a) = 103 mins, scenario (b) = 157 mins, scenario (c) = 283 mins)
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time: 14 mins)

the trade-off between preserving temperature comfort and
tracking the reference load set-point is clearly demonstrated.

V. CONCLUSION

In this paper, a robust model-based control scheme is
proposed for the collective control of residential inverter-type
air conditioners to provide ancillary services. The proposed
discrete-level control approach is consistent with existing
demand response standards and takes account of parametric
uncertainties in the thermal model and outdoor temperature
forecast errors. Furthermore, the proposed scheme requires
minimal information of household parameters. The results
demonstrate that accurate tracking of the reference signal can
be achieved up to a certain degree of worst-case uncertainty
while preserving customer comfort together with the lowest
possible control action on air conditioners.
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