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N s Why we need Regulation services ¢

Modern renewable energy generation by source, World
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The rapid growth of intermittent renewable energy generation
urges the need of additional reserve capacity to manage the grid.
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 Motivation behind the work




) o quemany What are Distributed Energy Resources
(DERs) and why they are useful ¢
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DERs are consumer owned devices that can generate, store or smartly manage
energy demand.

https://aemo.com.au/en/initiatives/major-programs/nem-distriouted-energy-resources-der-program
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https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Feb/IRENA_Market_integration_distributed_system_2019.pdf2la=en &hash=2A67D3A224F1443D529935DF471DSEATE23C774A
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A glimpse of DR initiatives around the world

Aggregators emerging.

Germany

Capacity auctions have created a
market worth SO0m GBP for demand
response aggregators, but the
European Court of Justice ruled in
November 2018 that the market
contravenes EU state aid regulations,
rising uncertainty

While not a key resource
currently, a number of
schemes underway
including a Virtual Power
Plant planned through
Sonnen/Tiko, qualified by
grid operator TenneT

Market participation trials with VPPs.

Around 1 GW through a
range of programmes, an
interruptible service and
and an incentive based
programme. Widespread
smart meter rollout, and
plans to open ancillary
service trade for DR

Around 28 GW of demand resource
participation in wholesale markets,
justunder 6% of peak demand, and
35 GW from retail programmes.
Advanced metering has reached
50%. Leading regional markets
include PJM, CAISO and MISO and
are largely explicit, but a number of
states are expanding time-based rate
pilots, particularly linked to off-peak
charging of EVs. 4 Ireland

- - 426 MW cleared in a 2019/20
capacity auction from demand
response, out of 8,266 MW total.

350 MW through VPPs. Full
deployment of smart meters
achieved early, but only in
2018 moving towards an
implementation of DR
through Virtual Power Plants

Other European countries

Belgium and France have both defined

P ro m isi n g O U 'I'C O m es roles and responsibilities for

independent aggregators, and
fro m re -I-O il p rog rams capacity available tripled between

* 2013 and 2015. A number of other
countries including the Nordics,
Netherlands or Austria have
implemented retailer-based DR
programmes, but not yet recognised
aggregators

.d
Trials with DER participation.

Leading country in creating
sandbox trials for advanced
services, including DR
services through the
Optiwatt project.
Interruptible services
amounted to around 7.2
MW in 2017.

Around 600 MW operated
through Demand response

| programme for Emergency
Reserve through retailers

and distributers, with plans
to open up DR aggregation |
for third parties.

Emerging third parties.

Trials have not been able to capture the residential DER aggregation.

IEA (2020), Tracking Energy Integration 2020, IEA, Paris https://www.iea.org/reports/tracking-energy-integration-2019
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Current applications of DR . . .
Future potential applications

of DR

Applications

DER aggregation in
Issues gored

Uncertainties in DER * Energy markets
aggregation

Peak

shaving « Ancillary service markefts

Retail

Lack of control « Emergency DR

Time —based O|gOI’iTth

programs

Compliance with
existing standards

Aggregator

Wholesale &
Market | ancillary
markets

Under-utilising the capacity of DER possessed by residential customers is a
missed opportunity in electricity markets.
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According to market policies [1],

Voluntary -
participation

Ancillary markets

Mandatory Non-compliance
commitment —
Aggregator

Mandatory
commitment

Emergency DR

Presence of uncertainties ¢

Aggregator at risk of receiving financial penalties for not delivering
contfracted demand in real-time.

[1] https://pjm.com/markets-and-operations.aspx 8
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S s Demand Response Standards

n : /
water heater
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pool pump
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qir conditioner

DRM-3

Limit to 75% rated

existing DR standards.

Load control algorithms in existing literature hardly take account of

https://www.energex.com.au/home/control-your-energy/positive-payback-program/positive-payback-for-business/air-conditioning-rewards




TRt Drawbacks of existing load

AUSTRALIA

control programs
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To what extent the existing algorithms account for market participation of DER
is always a question.




el \Why our primary focus is on Air-conditioning
loads?

) - 4

Why Air conditioning —

joads 2 QNN

A 4

\ 4

High thermal inertia Existing literafure

l_l

« Rarely consider inverter-type air

conditioners

v * Most of the approaches based on
Minimum effect on
temperature even

conftrolled for longer conditioners

durations

setpoint control of ON-OFF type air

* Incompatible with existing

demand response standards

The capabilities of inverter-type air conditioners operating under demand
response standards for regulation services requires further study.

11
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B L vernnnin Sys‘l'em Model

Using a first order thermal model (ETP model) for inverter-type air
conditioners,

Ti(k +1) = a;/Ti(k) + (1 — a;) [T,°" (k) — n: Ry Ps(F) ]

T. (k) :indoor temperature at time k obtained from [1]

T,”" (k) : outdoor temperature at time k Parameter Value

P (k) : power consumption at time k R 1.5 -2.5°C/kW
_ C 1.5 -2.5 kWh/°C

R, :thermal resistance " 2.5

C. :thermal capacitance
n, :coefficient of performance

4; = e~/ RiCi

Individual models can be stacked together to obtain the aggregate model
of the population of air conditioners (dynamically-decoupled).

x(k+ 1) = Ax(k) + Bu(k) + Dv(k) + w(k)
y(k) = Cx(k)

111 J. Mathieu, S. Koch and D. Callaway, "State estimation and control of electric loads to manage real-time energy imbalance," 13
2013 |EEE Power & Energy Society General Meeting, Vancouver, BC, 2013, pp. 1-1, doi: 10.1109/PESMG.2013.6672144.




Sl Overall Robust Model Predictive Control (MPC)
scheme

...................... >
Aggregate system: (np, houses)
x(k+ 1) = Ax(k) + Bu(k) + Dv(k) + w(k)
y(k) = Cx(k)
Control inputs (1) Outputs (y)
Robust MPC controller [«
A A A
. Uncertain
Uncertain Outdoor Reference
) Thermal parameters
temperature signal (R and C)

A

Obtained from PJM markets [1]

Controlinputs: power consumption set-points of air conditioners
Outputs: Indoor temperature measurements

14
[1] https://pjm.com/markets-and-operations.aspx
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Centralised control scheme

Design objectives

| |

Minimising Minimising set-point Minimising the change
reference signal temperature trackin oo °
[ fracking error ] [ P arror g in control effort
N-—-1
11 max E wp H(Pagg(k + jlk) — Pret(k + 7)) |1
u A
7=0

T Wy H(X(k ‘I’j“ﬂ) - Xset)Hl T WAy HAu(k ‘I'j"lﬂ)Hl

15
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Constraints of the problem

x(k+ 7+ 1|k) = Ax(k + j|k) + Bu(k + j|k)
+ Dv(k+ jlk) +w(k 4+ j|k)
Pagg(k + jlk) = PratedTU(k +J|k)

X<x(h+j) <X
Au(k + j|k) = u(k +j + 1|k) — u(k + j|k)
u(k + k) = {0.5,0.75,1.0] —
w(k+jlk) e W

for j=0,1,2...N —1

W — {W : HWHDCI i: WD} Worst-case

disturbance

16



& or sy How to find the worst-case disturbance for
Robust MPC scheme 2 (w,)

Deriving from first principles,

R, = Rnom,i + AR:
Ci — Onom,i + ACL

— _h'X(Rt.CE) — _h'X(Rnom 1‘|—&R1)(Cnnm '1—|_&C'1}
a; = € =€ : :
— E,_hz(Rnc-m,icnom,i‘l‘Rnom,i&Ci+Cn0m,£&Ri‘f—&Ri&Ci)
; = Unom,i + Aaﬂi

— e_h/(Rnom,z'Cnom,i)

afnom;i

Ti(k + 1) = (@nom.: + Aai)Ti(k) + (1 — (Gnom.: + Aas))
[(T;ﬂt(k) + AT (k)) — 1;(Rnom,i + &Ri)Pi(k)}

w; (k) = (1 — @nom,i) (AT (k) — n: AR; Pi(k)) — Aa;-

(TiDUt(k) o &TTIOUt (k) — 7 (Rnom,z’ + &Rz)Px(k))

17



& or sy How to find the worst-case disturbance for
Robust MPC scheme 2 (w,)

If we can estimate,

Remember |

Parameter Value
AC; = |A0i|max R 1.5 -2.5°C/kW
C 1.5 -2.5 kWh/°C

ARZ — |ARZ|maX 7 2.5

Analysing historical data, we can estimate outdoor temperature
prediction error

ATiOUt(ZC) — |AT@OUt|max

Finally, we have an estimation of (Wo)

18
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Simulation data

Pratea 2.5 kW
Temp constraints [ 22, 24]°C
Tset 23°C
Simulation step size 1 min
MPC prediction horizon (N) 3 mins
Tauration 1 hour

No. houses (ny) 1000

20
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Results

Time [min)

w0 =0.05°C w0 = 0.075°C

As the degree of uncertainty increases, most of the air conditioners tend
to operate at their extreme limits to avoid temperature violations.

However, tracking is maintained.

21
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Results (continued)

Under tightened temperature constraints and additive uncertainties
assumed to be positive
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Towards the end of the event, the tracking performance degrades in

order to maintain the indoor temperature within the limits

22
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Future Work
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Future work

v' Distributed conftrol of air conditioners instead of

centralised conftrol
* end-user privacy-preserving
« thermal comfort preserving

« taking into account uncertainties at

household level

24
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